Research Article

The bHLH transcription factor ASCL1 promotes differentiation of endocrine cells in the stomach and is regulated by Notch signaling

Published Online:https://doi.org/10.1152/ajpgi.00043.2023

Notch signaling regulates gastrointestinal stem cell proliferation and differentiation yet Notch-regulated transcriptional effectors of gastric epithelial cell differentiation are poorly understood. Here we tested the role of the bHLH transcription factor Achaete-Scute homolog 1 (ASCL1) in gastric epithelial cell differentiation, and its regulation by Notch. Newborn Ascl1 null mice showed a loss of expression of markers of neurogenin-3-dependent enteroendocrine cells, with normal expression of enterochromaffin-like cells, mucous cells, chief cells, and parietal cells. In adult mice, Ascl1 gene expression was observed in the stomach, but not the intestine, with higher expression in antral than corpus epithelium. Lineage tracing in Ascl1-CreERT2; Rosa26-LSL-tdTomato mice revealed single, scattered ASCL1+ cells in the gastric epithelium, demonstrating expression in antral gastrin- and serotonin-producing endocrine cells. ASCL1-expressing endocrine cells persisted for several weeks posttamoxifen labeling with a half-life of approximately 2 months. Lineage tracing in Gastrin-CreERT2 mice demonstrated a similar lifespan for gastrin-producing cells, confirming that gastric endocrine cells are long-lived. Finally, treatment of Ascl1-CreERT2; Rosa26-LSL-tdTomato mice with the pan-Notch inhibitor dibenzazepine increased the number of lineage-labeled cells in the gastric antrum, suggesting that Notch signaling normally inhibits Ascl1 expression. Notch regulation of Ascl1 was also demonstrated in a genetic mouse model of Notch activation, as well as Notch-manipulated antral organoid cultures, thus suggesting that ASCL1 is a key downstream Notch pathway effector promoting endocrine cell differentiation in the gastric epithelium.

NEW & NOTEWORTHY Although Notch signaling is known to regulate cellular differentiation in the stomach, downstream effectors are poorly described. Here we demonstrate that the bHLH transcription factor ASCL1 is expressed in endocrine cells in the stomach and is required for formation of neurogenin-3-dependent enteroendocrine cells but not enterochromaffin-like cells. We also demonstrate that Ascl1 expression is inhibited by Notch signaling, suggesting that ASCL1 is a Notch-regulated transcriptional effector directing enteroendocrine cell fate in the mouse stomach.

REFERENCES

  • 1. Demitrack ES, Gifford GB, Keeley TM, Carulli AJ, VanDussen KL, Thomas D, Giordano TJ, Liu Z, Kopan R, Samuelson LC. Notch signaling regulates gastric antral LGR5 stem cell function. EMBO J 34: 2522–2536, 2015. doi:10.15252/embj.201490583.
    Crossref | PubMed | Web of Science | Google Scholar
  • 2. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. III. Inward migration of neck cells followed by progressive transformation into zymogenic cells. Anat Rec 236: 297–313, 1993. doi:10.1002/ar.1092360204.
    Crossref | PubMed | Google Scholar
  • 3. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells. Anat Rec 236: 280–296, 1993. doi:10.1002/ar.1092360203.
    Crossref | PubMed | Google Scholar
  • 4. Lehy T, Willems G. Population kinetics of antral gastrin cells in the mouse. Gastroenterology 71: 614–619, 1976. doi:10.1016/S0016-5085(76)80552-5.
    Crossref | PubMed | Web of Science | Google Scholar
  • 5. Thompson EM, Price YE, Wright NA. Kinetics of enteroendocrine cells with implications for their origin: a study of the cholecystokinin and gastrin subpopulations combining tritiated thymidine labelling with immunocytochemistry in the mouse. Gut 31: 406–411, 1990. doi:10.1136/gut.31.4.406.
    Crossref | PubMed | Web of Science | Google Scholar
  • 6. Demitrack ES, Gifford GB, Keeley TM, Horita N, Todisco A, Turgeon DK, Siebel CW, Samuelson LC. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus. Am J Physiol Gastrointest Liver Physiol 312: G133–G144, 2017. doi:10.1152/ajpgi.00325.2016.
    Link | Web of Science | Google Scholar
  • 7. Gifford GB, Demitrack ES, Keeley TM, Tam A, La Cunza N, Dedhia PH, Spence JR, Simeone DM, Saotome I, Louvi A, Siebel CW, Samuelson LC. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis. Gut 66: 1001–1011, 2017. doi:10.1136/gutjnl-2015-310811.
    Crossref | PubMed | Web of Science | Google Scholar
  • 8. Horita N, Keeley TM, Hibdon ES, Delgado E, Lafkas D, Siebel CW, Samuelson LC. Delta-like 1-expressing cells at the gland base promote proliferation of gastric antral stem cells in mouse. Cell Mol Gastroenterol Hepatol 13: 275–287, 2022. doi:10.1016/j.jcmgh.2021.08.012.
    Crossref | PubMed | Web of Science | Google Scholar
  • 9. Noah TK, Shroyer NF. Notch in the intestine: regulation of homeostasis and pathogenesis. Annu Rev Physiol 75: 263–288, 2013. doi:10.1146/annurev-physiol-030212-183741.
    Crossref | PubMed | Web of Science | Google Scholar
  • 10. Demitrack ES, Samuelson LC. Notch regulation of gastrointestinal stem cells. J Physiol 594: 4791–4803, 2016. doi:10.1113/JP271667.
    Crossref | PubMed | Web of Science | Google Scholar
  • 11. Kim TH, Shivdasani RA. Notch signaling in stomach epithelial stem cell homeostasis. J Exp Med 208: 677–688, 2011. doi:10.1084/jem.20101737.
    Crossref | PubMed | Web of Science | Google Scholar
  • 12. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD. Control of endodermal endocrine development by Hes-1. Nat Genet 24: 36–44, 2000. doi:10.1038/71657.
    Crossref | PubMed | Web of Science | Google Scholar
  • 13. Verzi MP, Khan AH, Ito S, Shivdasani RA. Transcription factor foxq1 controls mucin gene expression and granule content in mouse stomach surface mucous cells. Gastroenterology 135: 591–600, 2008. doi:10.1053/j.gastro.2008.04.019.
    Crossref | PubMed | Web of Science | Google Scholar
  • 14. Horst D, Gu X, Bhasin M, Yang Q, Verzi M, Lin D, Joseph M, Zhang X, Chen W, Li YP, Shivdasani RA, Libermann TA. Requirement of the epithelium-specific Ets transcription factor Spdef for mucous gland cell function in the gastric antrum. J Biol Chem 285: 35047–35055, 2010. doi:10.1074/jbc.M110.164541.
    Crossref | PubMed | Web of Science | Google Scholar
  • 15. Kokubu H, Ohtsuka T, Kageyama R. Mash1 is required for neuroendocrine cell development in the glandular stomach. Genes Cells 13: 41–51, 2008. doi:10.1111/j.1365-2443.2007.01146.x.
    Crossref | PubMed | Web of Science | Google Scholar
  • 16. Lee CS, Perreault N, Brestelli JE, Kaestner KH. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev 16: 1488–1497, 2002. doi:10.1101/gad.985002.
    Crossref | PubMed | Web of Science | Google Scholar
  • 17. Lo YH, Chung E, Li Z, Wan YW, Mahe MM, Chen MS, Noah TK, Bell KN, Yalamanchili HK, Klisch TJ, Liu Z, Park JS, Shroyer NF. Transcriptional regulation by ATOH1 and its target SPDEF in the intestine. Cell Mol Gastroenterol Hepatol 3: 51–71, 2017. doi:10.1016/j.jcmgh.2016.10.001.
    Crossref | PubMed | Web of Science | Google Scholar
  • 18. Blaugrund E, Pham TD, Tennyson VM, Lo L, Sommer L, Anderson DJ, Gershon MD. Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence. Development 122: 309–320, 1996. doi:10.1242/dev.122.1.309.
    Crossref | PubMed | Web of Science | Google Scholar
  • 19. Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ, Turner DL. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127: 693–702, 2000. doi:10.1242/dev.127.4.693.
    Crossref | PubMed | Web of Science | Google Scholar
  • 20. Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75: 463–476, 1993. doi:10.1016/0092-8674(93)90381-y.
    Crossref | PubMed | Web of Science | Google Scholar
  • 21. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463: 1035–1041, 2010. doi:10.1038/nature08797.
    Crossref | PubMed | Web of Science | Google Scholar
  • 22. Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M, Baylin SB, Ball DW. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386: 852–855, 1997. doi:10.1038/386852a0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 23. Ito T, Udaka N, Yazawa T, Okudela K, Hayashi H, Sudo T, Guillemot F, Kageyama R, Kitamura H. Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 127: 3913–3921, 2000. doi:10.1242/dev.127.18.3913.
    Crossref | PubMed | Web of Science | Google Scholar
  • 24. Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, Girard L, Minna JD, Gazdar AF, Cobb MH, Johnson JE. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep 16: 1259–1272, 2016. doi:10.1016/j.celrep.2016.06.081.
    Crossref | PubMed | Web of Science | Google Scholar
  • 25. Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, Heymach JV, Johnson JE, Lehman JM, MacPherson D, Massion PP, Minna JD, Oliver TG, Quaranta V, Sage J, Thomas RK, Vakoc CR, Gazdar AF. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer 19: 289–297, 2019 [Erratum in Nat Rev Cancer19: 415, 2019] doi:10.1038/s41568-019-0133-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 26. Brzezinski JA 4th, Kim EJ, Johnson JE, Reh TA. Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development 138: 3519–3531, 2011. doi:10.1242/dev.064006.
    Crossref | PubMed | Web of Science | Google Scholar
  • 27. Kim EJ, Ables JL, Dickel LK, Eisch AJ, Johnson JE. Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6: e18472, 2011. doi:10.1371/journal.pone.0018472.
    Crossref | PubMed | Web of Science | Google Scholar
  • 28. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng HA. Robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13: 133–140, 2010. doi:10.1038/nn.2467.
    Crossref | PubMed | Web of Science | Google Scholar
  • 29. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007, 2007. doi:10.1038/nature06196.
    Crossref | PubMed | Web of Science | Google Scholar
  • 30. Murtaugh LC, Stanger BZ, Kwan KM, Melton DA. Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA 100: 14920–14925, 2003. doi:10.1073/pnas.2436557100.
    Crossref | PubMed | Web of Science | Google Scholar
  • 31. Ding L, Sontz EA, Saqui-Salces M, Merchant JL. Interleukin-1β suppresses gastrin via primary cilia and induces antral hyperplasia. Cell Mol Gastroenterol Hepatol 11: 1251–1266, 2021. doi:10.1016/j.jcmgh.2020.12.008.
    Crossref | PubMed | Web of Science | Google Scholar
  • 32. Keeley TM, Samuelson LC. Cytodifferentiation of the postnatal mouse stomach in normal and Huntingtin-interacting protein 1-related-deficient mice. Am J Physiol Gastrointest Liver Physiol 299: G1241–G1251, 2010. doi:10.1152/ajpgi.00239.2010.
    Link | Web of Science | Google Scholar
  • 33. Carulli AJ, Keeley TM, Demitrack ES, Chung J, Maillard I, Samuelson LC. Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration. Dev Biol 402: 98–108, 2015. doi:10.1016/j.ydbio.2015.03.012.
    Crossref | PubMed | Web of Science | Google Scholar
  • 34. Cheung LYM, Okano H, Camper SA. Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes. Mol Cell Endocrinol 439: 213–223, 2017. doi:10.1016/j.mce.2016.09.005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 35. Sang Q, Ciampoli D, Greferath U, Sommer L, Young HM. Innervation of the esophagus in mice that lack MASH1. J Comp Neurol 408: 1–10, 1999. doi:10.1002/(SICI)1096-9861(19990524)408:1<1::AID-CNE1>3.0.CO;2-4.
    Crossref | PubMed | Web of Science | Google Scholar
  • 36. Busslinger GA, Weusten BLA, Bogte A, Begthel H, Brosens LAA, Clevers H. Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Rep 34: 108819, 2021. doi:10.1016/j.celrep.2021.108819.
    Crossref | PubMed | Web of Science | Google Scholar
  • 37. Lee ER, Leblond CP. Dynamic histology of the antral epithelium in the mouse stomach: IV. Ultrastructure and renewal of gland cells. Am J Anat 172: 241–259, 1985. doi:10.1002/aja.1001720306.
    Crossref | PubMed | Google Scholar
  • 38. Karam SM. Lineage commitment and maturation of epithelial cells in the gut. Front Biosci 4: D286–298, 1999. doi:10.2741/karam.
    Crossref | PubMed | Google Scholar
  • 39. Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F, Jensen J, Kedinger M, Gradwohl G. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J 21: 6338–6347, 2002. doi:10.1093/emboj/cdf649.
    Crossref | PubMed | Web of Science | Google Scholar
  • 40. Li HJ, Johnston B, Aiello D, Caffrey DR, Giel-Moloney M, Rindi G, Leiter AB. Distinct cellular origins for serotonin-expressing and enterochromaffin-like cells in the gastric corpus. Gastroenterology 146: 754–764.e3, 2014. doi:10.1053/j.gastro.2013.11.048.
    Crossref | PubMed | Web of Science | Google Scholar
  • 41. López-Díaz L, Jain RN, Keeley TM, VanDussen KL, Brunkan CS, Gumucio DL, Samuelson LC. Intestinal neurogenin 3 directs differentiation of a bipotential secretory progenitor to endocrine cell rather than goblet cell fate. Dev Biol 309: 298–305, 2007. doi:10.1016/j.ydbio.2007.07.015.
    Crossref | PubMed | Web of Science | Google Scholar
  • 42. Schonhoff SE, Giel-Moloney M, Leiter AB. Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev Biol 270: 443–454, 2004. doi:10.1016/j.ydbio.2004.03.013.
    Crossref | PubMed | Web of Science | Google Scholar
  • 43. Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97: 1607–1611, 2000. doi:10.1073/pnas.97.4.1607.
    Crossref | PubMed | Web of Science | Google Scholar
  • 44. Masui T, Long Q, Beres TM, Magnuson MA, MacDonald RJ. Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev 21: 2629–2643, 2007. doi:10.1101/gad.1575207.
    Crossref | PubMed | Web of Science | Google Scholar
  • 45. Fujimoto S, Hattori T, Kimoto K, Yamashita S, Fujita S, Kawai K. Tritiated thymidine autoradiographic study on origin and renewal of gastrin cells in antral area of hamsters. Gastroenterology 79: 785–791, 1980. doi:10.1016/0016-5085(80)90429-1.
    Crossref | PubMed | Web of Science | Google Scholar
  • 46. Sueda R, Kageyama R. Regulation of active and quiescent somatic stem cells by Notch signaling. Dev Growth Differ 62: 59–66, 2020. doi:10.1111/dgd.12626.
    Crossref | PubMed | Web of Science | Google Scholar
  • 47. Flasse LC, Stern DG, Pirson JL, Manfroid I, Peers B, Voz ML. The bHLH transcription factor Ascl1a is essential for the specification of the intestinal secretory cells and mediates Notch signaling in the zebrafish intestine. Dev Biol 376: 187–197, 2013. doi:10.1016/j.ydbio.2013.01.011.
    Crossref | PubMed | Web of Science | Google Scholar
  • 48. Roach G, Heath Wallace R, Cameron A, Emrah Ozel R, Hongay CF, Baral R, Andreescu S, Wallace KN. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility. Dev Biol 376: 171–186, 2013. doi:10.1016/j.ydbio.2013.01.013.
    Crossref | PubMed | Web of Science | Google Scholar
  • 49. Zheng X, Tsuchiya K, Okamoto R, Iwasaki M, Kano Y, Sakamoto N, Nakamura T, Watanabe M. Suppression of hath1 gene expression directly regulated by hes1 via notch signaling is associated with goblet cell depletion in ulcerative colitis. Inflamm Bowel Dis 17: 2251–2260, 2011. doi:10.1002/ibd.21611.
    Crossref | PubMed | Web of Science | Google Scholar
  • 50. Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, Kaestner KH, Kopan R, Lewis J, Radtke F. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140: 1230–1240.e1–7, 2011. doi:10.1053/j.gastro.2011.01.005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 51. Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T, Clevers H, Radtke F. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9: 377–383, 2008. doi:10.1038/embor.2008.7.
    Crossref | PubMed | Web of Science | Google Scholar
  • 52. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435: 959–963, 2005. doi:10.1038/nature03659.
    Crossref | PubMed | Web of Science | Google Scholar
  • 53. VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud A, Grosse AS, Gumucio DL, Ernst SA, Tsai YH, Dempsey PJ, Samuelson LC. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139: 488–497, 2012. doi:10.1242/dev.070763.
    Crossref | PubMed | Web of Science | Google Scholar
  • 54. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294: 2155–2158, 2001. doi:10.1126/science.1065718.
    Crossref | PubMed | Web of Science | Google Scholar