The integration of genomics into nutritional sciences has illuminated the complexity of genome responses to nutritional exposures while offering opportunities to increase the effectiveness of nutritional interventions, both clinical and population based. Nutrients elicit multiple physiological responses that affect genome stability, imprinting, expression, and viability. These effects confer both health benefits and risks, some of which may not become apparent until later in life. Nutritional genomics challenges us to understand the reciprocal and complex interactions among the human genome and dietary components in normal physiology and pathophysiology. Understanding these interactions will refine current definitions of benefit and risk and lead to the establishment of dietary recommendations that have a high predictive value, minimize the risk of unintended consequences, and account for the modifying effects of human genetic variation. Furthermore, nutritional genomics will enable the design of effective dietary regimens for the prevention and management of complex chronic disease. This review focuses on new perspectives that have been presented to the nutritional sciences by the advent of genomics, and new challenges that demand attention because of their potential impact on, and immediate translation into, current public health nutrition recommendations and interventions.
The interface between the nutritional environment and cellular/genetic processes is being referred to as “nutrigenomics.” Nutrigenomics seeks to provide a molecular genetic understanding for how common dietary chemicals (i.e., nutrition) affect health by altering the expression and/or structure of an individual’s genetic makeup. The fundamental concepts of the field are that the progression from a healthy phenotype to a chronic disease phenotype must occur by changes in gene expression or by differences in activities of proteins and enzymes and that dietary chemicals directly or indirectly regulate the expression of genomic information. We present a conceptual basis and specific examples for this new branch of genomic research that focuses on the tenets of nutritional genomics: 1) common dietary chemicals act on the human genome, either directly or indirectly, to alter gene expression or structure; 2) under certain circumstances and in some individuals, diet can be a serious risk factor for a number of diseases; 3) some diet-regulated genes (and their normal, common variants) are likely to play a role in the onset, incidence, progression, and/or severity of chronic diseases; 4) the degree to which diet influences the balance between healthy and disease states may depend on an individual’s genetic makeup; and 5) dietary intervention based on knowledge of nutritional requirement, nutritional status, and genotype (i.e., “individualized nutrition”) can be used to prevent, mitigate, or cure chronic disease.
The identification of human sequence polymorphisms that regulate gene expression is key to understanding human genetic diseases. We report a survey of human genes that demonstrate allelic differences in gene expression, reflecting the presence of putative allele-specific cis-acting factors of either genetic or epigenetic nature. The expression of allelic transcripts in heterozygous samples is assessed directly by relative quantitation of intragenic marker alleles in messenger or heteronuclear RNA derived from cells or tissues. This survey used 193 single-nucleotide polymorphisms (SNPs) from 129 genes expressed in lymphoblastoid cell lines, to identify 23 genes (18%) with common allele-specific transcripts whose expression deviated from the expected equimolar ratio. A subset of these deviations, or “allelic imbalances,” can be observed in multiple samples derived from reference CEPH (“Centre d’Etude du Polymorphisme Humain”) pedigrees and demonstrate a spectrum of patterns of transmission, including cosegregation of allelic skewing across generations compatible with Mendelian inheritance as well as random monoallelic expression for three genes (IL1A, HTR2A, and FGB). Additional studies for BTN3A2 provide evidence of SNPs and haplotypes in complete linkage disequilibrium with high- and low-expressing transcripts. The pipeline described herein offers tools for efficient identification and characterization of allelic expression allowing identification of regulatory sequence variants as well as epigenetic variation affecting human gene expression.
Experiments examined the influence of diet and genetics on hypertension and renal disease in inbred Dahl salt-sensitive (SS/Mcw) rats and consomic rats in which chromosomes 16 (SS.BN16) or 18 (SS.BN18) of the normotensive Brown Norway rat were inserted into the genetic background of the SS/Mcw. Dahl SS/Mcw breeders and offspring were randomly placed on a purified AIN-76A diet or a grain-based diet, and male offspring were screened for cardiovascular and renal phenotypes following 3 wk on a 4.0% NaCl diet. High-salt arterial blood pressure (162 ± 5 mmHg, n = 10), urinary protein excretion (147 ± 16 mg/day, n = 14), and albumin excretion (72 ± 9 mg/day, n = 14) were significantly elevated in the Dahl SS/Mcw maintained on the purified diet compared with rats fed the grain-based diet. Rats fed the purified diet also exhibited significantly more renal glomerular and tubular damage than rats fed the grain diet. Moreover, feeding the purified diet to the parents led to a significant increase in blood pressure in the offspring, regardless of offspring diet. Similar dietary effects were observed in SS.BN16 and SS.BN18 rats. In rats fed the purified diet, substitution of chromosomes 16 or 18 led to a significant decrease in arterial blood pressure, albumin excretion, and protein excretion compared with the SS/Mcw. Chromosomal substitution did not, however, affect albumin or protein excretion in the consomic rats compared with the SS/Mcw when the rats were maintained on the grain diet. These data demonstrate a significant influence of diet composition on salt-induced hypertension and renal disease in the Dahl SS/Mcw rat.
Most individuals with cystic fibrosis (CF) carry one or two mutations that result in a maturation defect of the full-length CFTR protein. The ΔF508 mutation results in a mutant protein that is degraded by the proteosome instead of progressing to the apical membrane where it functions as a cAMP-regulated chloride channel. 4-Phenylbutyrate (PBA) modulates heat-shock protein expression and promotes trafficking of ΔF508, thus permitting maturation and membrane insertion. The goal of this study was to gain insight into the genetic mechanism of PBA action through a large-scale analysis of gene expression. The Affymetrix genome-spanning U133 microarray set was used to compare mRNA expression levels in untreated IB3-1 cell line cultures with cultures treated with 1 mM PBA for 12 and 24 h. The most notable changes in mRNA levels were transient elevations in heat-shock proteins. The majority of genes downregulated throughout the application period were functionally associated with control of gene expression. Another set of genes increased in expression starting at 24 h, suggesting these are downstream effects of altered gene expression initiated by PBA. More than one-third of the genes in this late expressing set were identified as having potential significance in understanding the pathology of CF. Our results demonstrate the usefulness of gene expression profile analysis in understanding the consequences of PBA treatment and provide insights in how this drug exerts its effect on the trafficking of CFTR.
It is well documented that blood neutrophils from parturient dairy cows do not perform as well as neutrophils from nonparturient cows in laboratory assays of adhesion, migration, or phagocytosis-induced respiratory burst. However, little is known about the possible molecular basis for parturition-induced changes in neutrophils. cDNA microarray analysis was used in the current study to explore parturition-induced changes in gene expression profiles in bovine blood neutrophils. Total RNA from isolated blood neutrophils of four parturient Holstein cows was obtained before, during, and after parturition, reverse transcribed into cDNA, and sequentially labeled with Cy3 or Cy5 dyes prior to paired hybridizations to 1,056 member bovine total leukocyte (BOTL-3) microarrays in a loop design. Resulting gene expression data were LOWESS normalized by array and analyzed using a mixed model approach. Results showed that expression profiles for 302 BOTL-3 genes were influenced by parturition. BLASTn analysis and preliminary clustering of affected genes by biological function indicated that the largest proportion (14%) of changed genes encode proteins critical to regulation of apoptosis. Independent confirmation of altered expression for 16 of these genes was achieved using quantitative real-time RT-PCR (Q-RT-PCR). A predominantly survival phenotype inferred from the microarray and Q-RT-PCR results was substantiated by monitoring apoptosis status of blood neutrophils from castrated male cattle cultured in the presence of sera from parturient cows. Thus our combined gene expression and apoptosis phenotyping results suggest that bovine parturition may induce prolonged survival in normally short-lived blood neutrophils.
Autopsy specimens are often used in molecular biological studies of disease pathophysiology. However, few analyses have focused specifically on postmortem changes in skeletal muscles, and almost all of those investigate protein or metabolic changes. Although some structural and enzymatic changes have been described, the sequence of transcriptional events associated with these remains unclear. We analyzed a series of new and preexisting human skeletal muscle data sets on ≃12,500 genes and expressed sequence tags (ESTs) generated by the Affymetrix U95Av2 GeneChips from seven autopsy and seven surgical specimens. Remarkably, postmortem specimens (up to 46 h) revealed a significant and prominent upregulation of transcripts involved with protein biosynthesis. Additional upregulated transcripts are associated with cellular responses to oxidative stress, hypoxia, and ischemia; however, only a subset of genes in these pathways was affected. Overexpression was also seen for apoptosis-related, cell cycle regulation/arrest-related, and signal transduction-related genes. No major gene expression differences were seen between autopsy specimens with <20-h and 34- to 46-h postmortem intervals or between pediatric and adult cases. These data demonstrate that, likely in response to hypoxia and oxidative stress, skeletal muscle undergoes a highly active transcriptional, and possibly, translational phase during the initial 46-h postmortem interval. Knowledge of these changes is important for proper interpretation of gene expression studies utilizing autopsy specimens.
Little is known about global gene expression patterns in the human neurodegenerative disease amyotrophic lateral sclerosis (ALS). To address this, we used high-density oligonucleotide microarray technology to compare expression levels of ∼6,800 genes in postmortem spinal cord gray matter obtained from individuals with ALS as well as normal individuals. Using Fisher discriminant analysis (FDA) and leave-one-out cross-validation (LOOCV), we discerned an ALS-specific signature. Moreover, it was possible to distinguish familial ALS (FALS) from sporadic ALS (SALS) gene expression profiles. Characterization of the specific genes significantly altered in ALS uncovered a pro-inflammatory terminal state. Moreover, we found alterations in genes involved in mitochondrial function, oxidative stress, excitotoxicity, apoptosis, cytoskeletal architecture, RNA transcription and translation, proteasomal function, and growth and signaling. It is apparent from this study that DNA microarray analysis and appropriate bioinformatics can reveal distinct phenotypic changes that underlie the terminal stages of neurodegeneration in ALS.
Immunoreactive renin has been reported in the hypothalamus and cerebellar cortex in the rodent brain and in neurons in all areas of the human brain. Despite these observations and the clear documentation of the expression of the other renin-angiotensin system genes in the brain, the notion that renin is endogenously expressed in the brain remains very controversial and undefined. This controversy no doubt arises because the level of renin expression in the brain is below the detection threshold of most standard assays. A transgenic mouse expressing enhanced green fluorescence protein (eGFP) under the control of the mouse renin promoter was recently reported. This model expresses eGFP in the kidney, which responds appropriately to both developmental and physiological stimuli. We therefore used eGFP as a sensitive marker to identify renin-expressing cells in the brain. We identified eGFP-containing cells in specific areas of the brain, including cerebellum, hippocampus, dorsal motor nucleus of the vagus, inferior olivary nucleus, reticular formation, rostral ventrolateral medulla, central nucleus of the amygdala, lateral parabrachial nucleus, mesencephalic trigeminal nucleus, bed nucleus of stria terminalis, and subfornical organ. By colabeling with neuron- or glia (astrocytes or oligodendrocytes)-specific antisera, we have determined the eGFP-positive cells to be mainly neuronal. These findings therefore strongly support the primary expression of renin mRNA in the brain in regions controlling cardiovascular function.
An important objective in postgenomic biology is to link gene expression to function by developing physiological networks that include data from the genomic and functional levels. Here, we develop a model for the analysis of time-dependent changes in metabolites, fluxes, and gene expression in a hepatic model system. The experimental framework chosen was modulation of extracellular glutamine in confluent cultures of mouse Hepa1-6 cells. The importance of glutamine has been demonstrated previously in mammalian cell culture by precipitating metabolic shifts with glutamine depletion and repletion. Our protocol removed glutamine from the medium for 24 h and returned it for a second 24 h. Flux assays of glycolysis, the tricarboxylic acid (TCA) cycle, and lipogenesis were used at specified intervals. All of these fluxes declined in the absence of glutamine and were restored when glutamine was repleted. Isotopomer spectral analysis identified glucose and glutamine as equal sources of lipogenic carbon. Metabolite measurements of organic acids and amino acids indicated that most metabolites changed in parallel with the fluxes. Experiments with actinomycin D indicated that de novo mRNA synthesis was required for observed flux changes during the depletion/repletion of glutamine. Analysis of gene expression data from DNA microarrays revealed that many more genes were anticorrelated with the glycolytic flux and glutamine level than were correlated with these indicators. In conclusion, this model may be useful as a prototype physiological regulatory network where gene expression profiles are analyzed in concert with changes in cell function.
The purpose of this study was to identify regions of the human genome linked to maximal oxygen uptake (V̇o2 max) and maximal power output (MPO), and their response to a standardized 20-wk endurance-training program in sedentary black and white subjects. A total of 509 polymorphic markers covering the 22 autosomes were used in the genome-wide linkage scan. Baseline phenotypes were adjusted for age, sex, and body mass, whereas the training responses were adjusted for age, sex, and the baseline values. Regression-based single- and multipoint linkage analyses were used. In the sedentary state, a total of 351 and 102 sibling pairs were available for whites and blacks, respectively, and 329 and 90 sibling pairs, respectively, for the training response phenotypes. Baseline V̇o2 max showed promising linkage (P < 0.0023) with 11p15.1 (whites), and suggestive evidence of linkage (0.01 > P > 0.0023) was found on 1p31, 7q32, and 7q36 (blacks). Baseline MPO exhibited promising linkage on 10q23 and suggestive evidence of linkage on 13q33 and 18q11-q12 (whites). V̇o2 max training response yielded promising linkages with markers on 1p31 (blacks) and suggestive on 4q27, 7q34, and 13q12 (whites) and on 16q22 and 20q13.1 (blacks). Training-induced changes in MPO showed promising linkages on 5q23 (whites) and suggestive on 1q21, 4p15.1, and 4p13 (whites) and on 1q22 and 13q11 (blacks). In conclusion, the strongest evidence of linkage was found on chromosomal regions 11p15 and 10q23 for V̇o2 max and MPO in the sedentary state and on chromosomes 1p31 and 5q23 for their responsiveness to training. These chromosomal regions harbor several candidate genes that deserve further investigation.
Age-related changes in body composition and serum lipids resemble symptoms of adult-onset growth hormone (GH) deficiency. GH treatment has been shown to normalize these changes in both GH-deficient adult patients and elderly subjects. The aim of this study was to identify GH-responsive genes that might mediate positive effects of GH treatment on fuel metabolism and body composition. cDNA microarrays were used to analyze age- and GH-induced changes in gene expression patterns in male rats. Tissues analyzed were liver, adipose tissue, and skeletal muscle from animals on or off GH treatment. A value of 1.5 was chosen to denote differences (increased or decreased expression) in the level of mRNA expression. In the liver, 7.3% of the expressed genes were affected by age and 6.5% by GH. Similar values for the other tissues were 8.3% and 5.3% (fat), and 7.9% and 9.6% (muscle), respectively. Among the differentially expressed genes, we identified several that encode proteins involved in fuel metabolism. Old rats were shown to have induced expression of genes involved in hepatic glucose oxidation and lipid synthesis, whereas these pathways were reduced in adipose tissue. GH treatment induced the expression of genes for lipid oxidation in liver and for glucose oxidation in skeletal muscle. In adipose tissue, GH reduced the expression of genes involved in lipogenesis even further. Changes in transcript levels were reflected in serum in terms of altered lipid profiles. Serum levels of triglycerides, high-density lipoprotein (HDL) cholesterol, and total cholesterol were higher in the old animals than in the young and normalized by GH treatment.
Growth and development of pig fetuses is dependent on the coordinated expression of multiple genes. Between 21 and 45 days of gestation, fetuses experience increasing growth rates that can result in uterine crowding and increased mortality. We used differential display reverse transcription-PCR (DDRT-PCR) to identify differentially expressed genes in pig fetuses at 21, 35, and 45 days of gestation. Pig cDNAs were identified with homologies to CD3 γ-subunit, collagen type XIV α1, complement component C6, craniofacial developmental protein 1, crystallin-γE, DNA binding protein B, ε-globin, formin binding protein 2, ribosomal protein L23, small acidic protein, secreted frizzled related protein 2, titin, vitamin D binding protein, and two hypothetical protein products. Two novel expressed sequence tags (ESTs) were also identified. Expression patterns were confirmed for eight genes, and spatiotemporal expression of three genes was evaluated. We identified novel transcriptome changes in fetal pigs during a period of rapid growth. These changes involved genes with a spectrum of proposed functions, including musculoskeletal growth, immune system function, and cellular regulation. This information can ultimately be used to enhance production efficiency through improved pig growth and survival.
β-Adrenergic receptor agonists (BA) stimulate skeletal muscle growth. However, downstream signaling pathways that facilitate this effect remain poorly defined. Objectives of this study were to identify genes differentially expressed after administration of a novel BA and to evaluate the expression of one of those genes in additional models of skeletal muscle growth. Differentially expressed gene fragments were identified through differential display of skeletal muscle biopsies from five steers 24 h after administration of the BA. Five gene fragments designated DD53, DD143, DD163, DD209, and DD214 were identified. Tissue distribution of these genes was evaluated by RT-PCR. While DD53, DD163, DD209, and DD214 were expressed across tissues, DD143 mRNA expression was most abundant in skeletal muscle. DD143, later identified as bovine ASB15, was evaluated in rats following administration of anabolic compounds. Thirteen 7-wk-old female rats were randomly assigned to each of four treatment groups including: control, clenbuterol, trenbolone acetate (TBA), and growth hormone (GH). Changes in rat Asb-15 mRNA were measured at 30 min, 12 h, and 24 h following intraperitoneal injections of each compound. Clenbuterol treatment decreased Asb-15 mRNA in skeletal muscle at 12 and 24 h (P < 0.01) and also decreased mRNA in lung at 12 h (P < 0.05). TBA and GH treatments did not alter Asb-15 mRNA in any of the tissues evaluated (P > 0.10). These results are the first to associate an Asb gene family member with muscle growth or BA administration and suggest a potential role for ASB15 in β-agonist-induced skeletal muscle hypertrophy.