Cover: Immunohistochemical labeling of epithelial sodium channel ENaC in renal collecting duct principal cells. See related article by de Seigneux S, Nielsen J, Olesen ETB, Dimke H, Kwon T-H, Frøkiær J, and Nielsen S. Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney. Am J Physiol Renal Physiol. 293: F87–F99, 2007.
The regulation of ion channels and transporters by phosphoinositides has received much attention over the past 10 years. There are multiple potential mechanisms for regulation of ion channels and transporters by PIP2, including a direct binding of PIP2 to the target proteins, alterations of membrane insertion, and retrieval. Added to the complexities of multiple potential mechanisms is how cells use PIP2 to regulate so many different processes. Here, I briefly review several past and recent studies to illustrate the complexities and raise outstanding questions for future studies.
We tested the hypotheses that the NO-cGMP-PKG pathway mediates inhibition of the store-operated cation channel (SOC) in human glomerular mesangial cells (HMC) and that TRPC4, a molecular component of SOC in HMC, is associated with PKG-phosphorylated vasodilator-stimulated phosphoprotein (VASP). Using fura 2 ratiometry, we measured intracellular Ca2+ concentration [Ca2+]i to determine whether sodium nitroprusside (SNP), an NO donor, and 8-Br-cGMP affected SOC-TRPC4 via PKG. We found that the SOC response in HMC was attenuated in the presence of 100 μM SNP, an NO donor, or 100 μM 8-Br-cGMP. Addition of DT-3 (2.5 μM), a specific PKG-1α inhibitor, reversed the effects of 8-Br-cGMP on the SOC response. Application of 100 μM cAMP did not significantly inhibit the SOC response. RT-PCR and Western blotting revealed PKG-1α transcript and protein in HMC. Immunocytochemical analysis localized PKG-1α to the cytoplasm and plasma membrane of HMC. Previous studies have shown that PKG-mediated phosphorylation of VASP attenuates cellular Ca2+ entry, resulting in altered growth and proliferation. Therefore, we used Western blotting and immunocytochemistry to determine whether PKG-phosphorylated VASP associates with TRPC4. Western blot analysis revealed that 8-Br-cGMP enhanced the phosphorylation of VASP at serine 239 (Ser239), a known PKG phosphorylation site, in HMC within 5 min. Coimmunoprecipitation and coimmunostaining showed that P-Ser239-VASP associated with TRPC4. However, VASP that was unphosphorylated at Ser239 was not associated with TRPC4. These results indicate that VASP has a role in the NO/PKG-1α-mediated inhibition of the TRPC4-SOC response in HMC.
The glomerular filtration barrier (GFB) is generally considered to consist of three layers: fenestrated glomerular endothelium, glomerular basement membrane, and filtration slits between adjacent podocyte foot processes. Detailed anatomic examination of the GFB has revealed a novel abluminal structure, the subpodocyte space (SPS), identified as the labyrinthine space between the underside of podocyte cell body/primary processes and the foot processes. The SPS covers 50–65% of the filtration surface of the GFB, indicating that SPS may influence glomerular permeability. We have examined the contribution of the SPS to the permeability characteristics of the GFB using multiphoton microscopy techniques in isolated, perfused glomeruli and in the intact kidney in vivo. SPS were identified using this technique, with comparable dimensions to SPS examined with electron microscopy. The passage of the intermediate-weight molecule rhodamine-conjugated 10-kDa dextran, but not the low-weight molecule lucifer yellow (≈450 Da), accumulated in SPS-covered regions of the GFB, compared with GFB regions not covered by SPS (“naked regions”). Net lucifer yellow flux (taken to indicate fluid flux) through identifiable SPS regions was calculated to be 66–75% of that occurring through naked regions. These observations indicate both ultrafiltration and hydraulic resistance imparted by the SPS, demonstrating the potential physiological contribution of the SPS to glomerular permeability.
Production of urine is initiated by fluid and solute flux across the glomerular filtration barrier. Recent ultrastructural studies have shown that under extreme conditions of no filtration, or very high filtration, a restriction to flow is predicted in a space underneath the podocyte cell body or its processes, the subpodocyte space (SPS). The SPS covered up to two-thirds of the glomerular filtration barrier (GFB) surface. The magnitude of this restriction to flow suggested that it might be unlikely that filtration into and flow through the SPS would contribute significantly to total flow across the entire GFB under these conditions. To determine whether the SPS has similar properties under normal physiological conditions, we have carried out further three-dimensional reconstruction of rat glomeruli perfused at physiologically normal hydrostatic and colloid osmotic pressures. These reconstructions show that the sub-podocyte space is even more restricted under these conditions, with a mean height of the SPS of 0.34 μm, mean pathlength of 6.7 ± 1.4 μm, a mean width of the SPS exit pore of 0.15 ± 0.05 μm, and length of 0.25 ± 0.05 μm. Mathematical modeling of this SPS based on a circular flow model predicts that the resistance of these dimensions is 2.47 times that of the glomerular filtration barrier and exquisitely sensitive to changes in the dimensions of the SPS exit pore (SEP), indicating that the SEP could be the principal regulator of the extravascular pressure in the SPS. This suggests a physiological role of the podocyte in the regulation of glomerular fluid flux across most of the GFB.
A fraction of the body's creatine and creatine phosphate spontaneously degrades to creatinine, which is excreted by the kidneys. In humans, this amounts to ∼1–2 g/day and demands a comparable rate of de novo creatine synthesis. This is a two-step process in which l-arginine:glycine amidinotransferase (AGAT) catalyzes the conversion of glycine and arginine to ornithine and guanidinoacetate (GAA); guanidinoacetate methyltransferase (GAMT) then catalyzes the S-adenosylmethionine-dependent methylation of GAA to creatine. AGAT is found in the kidney and GAMT in the liver, which implies an interorgan movement of GAA from the kidney to the liver. We studied the renal production of this metabolite in both rats and humans. In control rats, [GAA] was 5.9 μM in arterial plasma and 10.9 μM in renal venous plasma for a renal arteriovenous (A-V) difference of −5.0 μM. In the rat, infusion of arginine or citrulline markedly increased renal GAA production but infusion of glycine did not. Rats fed 0.4% creatine in their diet had decreased renal AGAT activity and mRNA, an arterial plasma [GAA] of 1.5 μM, and a decreased renal A-V difference for GAA of −0.9 μM. In humans, [GAA] was 2.4 μM in arterial plasma, with a renal A-V difference of −1.1 μM. These studies show, for the first time, that GAA is produced by both rat and human kidneys in vivo.
Collecting duct (CD)-derived endothelin-1 (ET-1) exerts natriuretic, diuretic, and hypotensive effects. In vitro studies have implicated cyclooxygenase (COX) metabolites, and particularly PGE2, as important mediators of CD ET-1 effects. However, it is unknown whether PGE2 mediates CD-derived ET-1 actions in vivo. To test this, CD ET-1 knockout (KO) and control mice were studied. During normal salt and water intake, urinary PGE2 excretion was unexpectedly increased in CD ET-1 KO mice compared with controls. Salt loading markedly increased urinary PGE2 excretion in both groups of mice; however, the levels remained relatively higher in KO animals. Acutely isolated inner medullary collecting duct (IMCD) from KO mice also had increased PGE2 production. The increased IMCD PGE2 was COX-2 dependent, since NS-398 blocked all PGE2 production. However, increased CD ET-1 KO COX-2 protein or mRNA could not be detected in inner medulla or IMCD, respectively. Inner medullary COX-1 mRNA and protein levels and IMCD COX-1 mRNA levels were unaffected by Na intake or CD ET-1 KO. KO mice on a normal or high-Na diet had elevated blood pressure compared with controls; this difference was not altered by indomethacin or NS-398 treatment. However, indomethacin or NS-398 did increase urine osmolality and reduce urine volume in KO, but not control, animals. In summary, IMCD COX-2-dependent PGE2 production is increased in CD ET-1 KO mice, indicating that CD-derived ET-1 is not a primary regulator of IMCD PGE2. Furthermore, the increased PGE2 in CD ET-1 KO mice partly compensates for loss of ET-1 with respect to maintaining urinary water excretion, but not in blood pressure control.
Neuropeptide Y (NPY) is coreleased with norepinephrine and stimulates vasoconstriction, vascular and cardiomyocyte hypertrophy via Y1 receptors (R) and angiogenesis via Y2R. Although circulating NPY is elevated in heart failure, NPY's role remains unclear. Activation of the NPY system was determined in Wistar rats with the aortocaval (A-V) fistula model of high-output heart failure. Plasma NPY levels were elevated in A-V fistula animals (115.7 ± 15.3 vs. 63.1 ± 17.4 pM in sham, P < 0.04). Animals either compensated [urinary Na+ excretion returning to normal with moderate disease (COMP)] or remained decompensated with severe cardiac and renal failure (urinary Na+ excretion <0.5 meq/day), increased heart weight, decreased mean arterial pressure and renal blood flow (RBF), and death within 5–7 days (DECOMP). Cardiac and renal tissue NPY decreased with heart failure, proportionate to the severity of renal complications. Cardiac and renal Y1R mRNA expression also decreased (1.5-fold, P < 0.005) in rats with heart failure. In contrast, Y2R expression increased up to 72-fold in the heart and 5.7-fold in the kidney (P < 0.001) proportionate to severity of heart failure and cardiac hypertrophy. Changes in receptor expression were confirmed since the Y1R agonist, [Leu31, Pro34]-NPY, had no effect on RBF, whereas the Y2R agonist (13–36)-NPY increased RBF to compensate for disease. Thus, in this model of heart failure, cardiac and renal NPY Y1 receptors decrease and Y2 receptors increase, suggesting an increased effect of NPY on the receptors involved in cardiac remodeling and angiogenesis, and highlighting an important regulatory role of NPY in congestive heart failure.
FXYD5 is a member of a family of tissue-specific regulators of the Na+-K+-ATPase expressed in kidney tubules. Previously, we have shown that FXYD5 interacts with the αβ-subunits of the Na+-K+-ATPase and increases its Vmax (Lubarski I, Pihakaski-Maunsbach K, Karlish SJ, Maunsbach AB, Garty H. J Biol Chem 280: 37717–37724, 2005). The current study further characterizes structural interaction and structure-function relationships of FXYD5. FXYD5/FXYD4 chimeras expressed in Xenopus laevis oocytes have been used to demonstrate that both the high-affinity association with the pump and the increase in Vmax are mediated by the transmembrane domain of FXYD5. Several amino acids that participate in the high-affinity interaction between FXYD5 and the α-subunit of the Na+-K+-ATPase have been identified. The data suggest that different FXYD proteins interact similarly with the Na+-K+-ATPase and their transmembrane domains play a key role in both the structural interactions and functional effects. Other experiments have identified at least one splice variant of FXYD5 with 10 additional amino acids at the COOH terminus, suggesting the possibility of other functional effects not mediated by the transmembrane domain. FXYD5 could be specifically bound to wheat germ agglutinin beads, indicating that it is glycosylated. However, unlike previous findings in metastatic cells, such glycosylation does not evoke a large increase in the size of the protein expressed in native epithelia and X. laevis oocytes.
The inhalational anesthetic isoflurane has been shown to protect against renal ischemia-reperfusion (IR) injury. Previous studies demonstrated that isoflurane modulates sphingolipid metabolism in renal proximal tubule cells. We sought to determine whether isoflurane stimulates sphingosine kinase (SK) activity and synthesis of sphingosine-1-phosphate (S1P) in renal proximal tubule cells to mediate renal protection via the S1P signaling pathway. Isoflurane anesthesia reduced the degree of renal failure and necrosis in a murine model of renal IR injury. This protection with isoflurane was reversed by SK inhibitors (DMS and SKI-II) as well as an S1P1 receptor antagonist (VPC23019). In addition, mice deficient in SK1 enzyme were not protected from IR injury with isoflurane. SK activity as well as SK1 mRNA expression increased in both cultured human proximal tubule cells (HK-2) and mouse kidneys after exposure to isoflurane. Finally, isoflurane increased the generation of S1P in HK-2 cells. Taken together, our findings indicate that isoflurane activates SK in renal tubule cells and initiates S1P→S1P1 receptor signaling to mediate the renal protective effects. Our findings may help to unravel the cellular signaling pathways of volatile anesthetic-mediated renal protection and lead to new therapeutic applications of inhalational anesthetics during the perioperative period.
von Hippel-Lindau (VHL) disease is a cancer syndrome, which includes renal cell carcinoma (RCC), and is caused by VHL mutations. Most, but not all VHL phenotypes are due to failure of mutant VHL to regulate constitutive proteolysis of hypoxia-inducible factors (HIFs). Janus kinases (JAK1, 2, 3, and TYK2) promote cell survival and proliferation, processes tightly controlled by SOCS proteins, which have sequence and structural homology to VHL. We hypothesized that in VHL disease, RCC pathogenesis results from enhanced SOCS1 degradation, leading to upregulated JAK activity. We find that baseline JAK2, JAK3, and TYK2 activities are increased in RCC cell lines, even after serum deprivation or coincubation with cytokine inhibitors. Furthermore, JAK activity is sustained in RCC stably expressing HIF2α shRNA. Invasion through Matrigel and migration in wound-healing assays, in vitro correlates of metastasis, are significantly greater in VHL mutant RCC compared with wild-type cells, and blocked by dominant-negative JAK expression or JAK inhibitors. Finally, we observe enhanced SOCS2/SOCS1 coprecipitation and reduced SOCS1 expression due to proteasomal degradation in VHL-null RCC compared with wild-type cells. The data support a new HIF-independent mechanism of RCC metastasis, whereby SOCS2 recruits SOCS1 for ubiquitination and proteasome degradation, which lead to unrestricted JAK-dependent RCC invasion. In addition to commonly proposed RCC treatment strategies that target HIFs, our data suggest that JAK inhibition represents an alternative therapeutic approach.
We showed previously that activation of A1 adenosine receptors (AR) protects against renal ischemia-reperfusion (IR) injury in rats and mice. In the heart, transient A1AR activation produces biphasic protective effects: acute protection wanes after several hours but protective effects return 24–72 h later (second window of protection). In this study, we determined whether A1AR activation produces delayed renal protection and elucidated the mechanisms of acute and delayed renal protection. A1AR wild-type mice were subjected to 30-min renal ischemia and 24 h of reperfusion to produce acute renal failure. Pretreatment with a selective A1AR agonist 2-chloro-N6-cyclopentyladenosine (CCPA; 0.1 mg/kg bolus ip) either 15 min or 24 h before renal ischemia protected against renal IR injury and reduced renal corticomedullary necrosis, apoptosis, and inflammation. Transient A1AR activation led to phosphorylation of extracellular signal-regulated protein kinase mitogen-activated protein kinase (ERK MAPK), Akt, and heat shock protein 27 (HSP27). Moreover, induction of HSP27 and Akt occurred with CCPA treatment. Inhibition of PKC with chelerythrine prevented acute but not delayed renal protection with A1AR activation. Moreover, deletion of PI3Kγ or inhibition of Akt, but not inhibition of ERK, prevented delayed and acute renal protection with A1AR activation. Inhibition of Gi/o with pertussis toxin obliterated both acute and delayed A1AR-mediated renal protection. In contrast to renal protection with delayed ischemic preconditioning, nitric oxide synthase activity was not induced with delayed A1AR-mediated renal protection. Therefore, transient activation of renal A1AR led to acute as well as delayed protective effects against renal IR injury via distinct signaling pathways.
Aquaporin (AQP) 1 null mice have a defect in the renal concentrating gradient because of their inability to generate a hyperosmotic medullary interstitium. To determine the effect of vasopressin on renal medullary gene expression, in the absence of high local osmolarity, we infused 1-deamino-8-d-arginine vasopressin (dDAVP), a V2 receptor (V2R)-specific agonist, in AQP1 null mice for 7 days. cDNA microarray analysis was performed on the renal medullary tissue, and 5,140 genes of the possible 12,000 genes on the array were included in the analysis. In the renal medulla of AQP1 null mice, 245 transcripts were identified as increased by dDAVP infusion and 200 transcripts as decreased (1.5-fold or more). Quantitative real-time PCR measurements confirmed the increases seen for cyclin D1, early growth response gene 1, and activating transcription factor 3, genes associated with changes in cell cycle/growth. Changes in mRNA expression were correlated with changes in protein expression by semiquantitative immunoblotting; cyclin D1 and ATF3 were increased significantly in abundance following dDAVP infusion in the renal medulla of AQP1 null mice (161 and 461%, respectively). A significant increase in proliferation of medullary collecting ducts cells, following V2R activation, was identified by proliferating cell nuclear antigen immunohistochemistry; colocalization studies with AQP2 indicated that the increase in proliferation was primarily observed in principal cells of the inner medullary collecting duct (IMCD). V2R activation, via dDAVP, increased AQP2 and AQP3 protein abundance in the cortical collecting ducts of AQP1 null mice. However, V2R activation did not increase AQP2 protein abundance in the IMCD of AQP1 null mice.
The prototypical member of the vanilloid-responsive-like subfamily of transient receptor potential (TRP) channels is TRPV1. TRPV1 mediates aspects of nociception and neurogenic inflammation; however, new roles are emerging in sensation of both luminal stretch and systemic tonicity. Although at least six nonsynonymous polymorphisms in the human TRPV1 gene have been identified, there has been no systematic investigation into their functional consequences. When heterologously expressed in HEK293 cells, all variants exhibited equivalent EC50 for the classic agonist capsaicin. This agonist elicited a greater maximal response in TRPV1I315M and TRPV1P91S variants (relative to TRPV1WT), as did a second agonist, anandamide. Expression of these two variants in whole-cell lysates and at the cell surface was markedly greater than that of wild-type TRPV1, whereas expression at the mRNA level was either unchanged (TRPV1P91S) or only very modestly increased (TRPV1I315M). Incorporation of multiple nonsynonymous SNPs, informed by the population-specific haplotype block structure of the TRPV1 gene, did not lead to variant channels with unique features vis-à-vis capsaicin responsiveness. Recently, polymorphisms/mutations were identified in two highly conserved TRPV1 residues in the nonobese diabetic (NOD) murine model. Incorporation of these changes into human TRPV1 gave rise to a channel with a normal EC50 for capsaicin, but with a markedly elevated Hill slope such that the variant channel was hyporesponsive to capsaicin at low doses (<10 nM) and hyperresponsive at high doses (>10 nM). In aggregate, these data underscore expression-level and functional differences among naturally occurring TRPV1 variants; the implications with respect to human physiology are considered.
Pressure is an important physiological regulator, but under abnormal conditions it may be a critical factor in the onset and progression of disease in many organs. In vivo, proximal tubular epithelial cells are subjected to pressure as a result of ureteral obstruction, which may influence the production of nitric oxide (NO), a ubiquitous multifunctional cytokine. To directly explore the effect of pressure on the expression and activity of NO synthase (NOS) in cultured proximal tubular epithelial cells, a novel pressure apparatus was developed. Cells were subjected to pressures of 20–120 mmHg over time (5 min-72 h). RT-PCR demonstrated an increase in inducible NOS (iNOS) and sGC, while endothelial NOS remained unchanged. Real-time PCR (qPCR) confirmed an earlier induction of iNOS transcript subjected to 60 mmHg compared with cytokine mix. iNOS protein expression was significantly increased following 60 mmHg of pressure for 24 h. Use of nuclear factor-κB inhibitors was shown to prevent the increase in iNOS expression following 60 mmHg for 2 h. NO and cGMP were increased with the application of pressure. The addition of the irreversible iNOS inhibitor (1400W) was shown to prevent this increase. We demonstrate that with the use of a simply designed apparatus, pressure led to an extremely early induction of iNOS and a rapid activation of NOS activity to increase NO and cGMP in proximal tubule epithelial cells. The rapid effects of pressure on iNOS may have important implications in the obstructed kidney.
We previously showed that ANG II induces mesangial cell (MC) proliferation via the JNK-activator protein-1 pathway. The present study attempted to determine the upstream mediators of JNK activation, with emphasis on reactive oxygen species (ROS) and the epidermal growth factor (EGF) receptor (EGFR). In cultured human MCs (HMCs), as early as 3 min, ANG II time dependently increased intracellular ROS production, which was sensitive to 10 μM diphenyleneiodonium sulfate and 500 μM apocynin, two structurally distinct NADPH oxidase inhibitors. In contrast, inhibitors of other oxidant-producing enzymes, including the mitochondrial complex I inhibitor rotenone, the xanthine oxidase inhibitor allopurinol, the cyclooxygenase inhibitor indomethacin, the lipoxygenase inhibitor nordihydroguiaretic acid, the cytochrome P-450 oxygenase inhibitor ketoconazole, and the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester, were without effect. ANG II-induced ROS generation was inhibited by the angiotensin type 1 receptor antagonist losartan (10 μM) but not the angiotensin type 2 receptor antagonist PD-123319 (10 μM). ANG II induced translocation of p47phox and p67phox from the cytosol to the membrane. The antioxidants almost abolished the ANG II mitogenic response, as assessed by [3H]thymidine incorporation and cell number, associated with a remarkable blockade of the activation of EGFR (90% inhibition) and JNK (83% inhibition). The EGFR inhibitor AG-1478 was able to mimic the effect of antioxidants, in that it inhibited the mitogenic response and the JNK activation following ANG II treatment. Together, these data suggest that the ROS-EGFR-JNK pathway is involved in transducing the proliferative effect of ANG II in cultured HMCs.
Calcineurin (Cn)-Aα-deficient mice develop abnormalities of postnatal kidney development, similar to that of cyclooxygenase (COX)-2-deficient mice. The present study was undertaken to examine expression and regulation of Cn isoforms in the developing kidney during the postnatal period and further characterize the relationship between Cn and COX-2. The protein expressions of all three Cn isoforms, including Cn-Aα, -Aβ, and -B, as determined by immunoblotting, increased in parallel in the first postnatal week and declined gradually with age. Renal Cn-Aα and -Aβ mRNA expressions were both developmentally regulated in the same fashion as their protein expressions, whereas renal Cn-B1 mRNA was not obviously induced in the first postnatal week. Immunohistochemistry demonstrated colocalization of Cn-Aα, Cn-Aβ, and COX-2 in the same cells of thick ascending limb and macula densa. Administration with cyclosporine A (2.5 mg·kg−1·day−1) during the postnatal period remarkably suppressed renal COX-2 expression as assessed by both immunoblotting and immunohistochemistry. Deletion of Cn-Aα but not Cn-Aβ in mice significantly reduced renal COX-2 expression at the postnatal period. Together, these data suggest that renal Cn isoforms are subject to normal developmental regulation and they may play a role in postnatal kidney development via interaction with COX-2.
This study examined the genetic basis for hypertension and renal disease phenotypes in Fawn Hooded hypertensive (FHH) rats using chromosome substitution strains (consomic rats) in which each of the 20 autosomes as well as the X and Y chromosomes were transferred from the normal Brown Norway (BN) rat onto the FHH genetic background. Male and female rats of each of the parental and consomic strains were maintained for 2 wk on high-salt (8.0% NaCl) chow with NG-nitro-l-arginine methyl ester (l-NAME) in the drinking water (12.5 mg/l) to induce hypertension and renal disease. Mean arterial blood pressure (MAP) was significantly higher (by over 60 mmHg) in the male FHH compared with BN rats. Urinary protein and albumin excretion rates were increased by 15- and 40-fold, respectively, in the male FHH compared with the BN. Plasma renin activity was 10-fold higher in the FHH than the BN. Similar significant differences were observed between the female FHH and BN, but the degree of hypertension and proteinuria was of a lesser magnitude. Substitution of chromosome 20 from the BN to the FHH attenuated the development of l-NAME-induced hypertension, normalized plasma renin activity, and decreased plasma creatinine in male rats. In female rats, substitution of chromosome 15 decreased MAP and urinary protein excretion. Urinary excretion of albumin in males was decreased by substitution of chromosomes 1, 15, 16, and 18 from the BN into the FHH genetic background. The present data indicate that genes that can modify l-NAME-induced hypertension and proteinuria are on chromosomes 1, 15, 16, 18, and 20.
Mice deficient in the ATP6V1B1 (“B1”) subunit of the vacuolar proton-pumping ATPase (V-ATPase) maintain body acid-base homeostasis under normal conditions, but not when exposed to an acid load. Here, compensatory mechanisms involving the alternate ATP6V1B2 (“B2”) isoform were examined to explain the persistence of baseline pH regulation in these animals. By immunocytochemistry, the mean pixel intensity of apical B2 immunostaining in medullary A intercalated cells (A-ICs) was twofold greater in B1−/− mice than in B1+/+ animals, and B2 was colocalized with other V-ATPase subunits. No significant upregulation of B2 mRNA or protein expression was detected in B1−/− mice compared with wild-type controls. We conclude that increased apical B2 staining is due to relocalization of B2-containing V-ATPase complexes from the cytosol to the plasma membrane. Recycling of B2-containing holoenzymes between these domains was confirmed by the intracellular accumulation of B1-deficient V-ATPases in response to the microtubule-disrupting drug colchicine. V-ATPase membrane expression is further supported by the presence of “rod-shaped” intramembranous particles seen by freeze fracture microscopy in apical membranes of normal and B1-deficient A-ICs. Intracellular pH recovery assays show that significant (28–40% of normal) V-ATPase function is preserved in medullary ICs from B1−/− mice. We conclude that the activity of apical B2-containing V-ATPase holoenzymes in A-ICs is sufficient to maintain baseline acid-base homeostasis in B1-deficient mice. However, our results show no increase in cell surface V-ATPase activity in response to metabolic acidosis in ICs from these animals, consistent with their inability to appropriately acidify their urine under these conditions.
Renal expression of MMP-2, -9, and tissue inhibitor of MMP-1 (TIMP-1) correlates with histological disease activity in anti-neutrophil cytoplasm autoantibody (ANCA)-associated vasculitis (AAV). We studied whether urinary and plasma levels of MMP-2, -9, and TIMP-1 reflect renal expression of these proteins and renal disease-activity in AAV. Urine and plasma samples of patients with AAV who underwent a renal biopsy were collected (n = 32). Urinary activity of MMP-2 and -9 was measured by activity assays. Urinary and plasma levels of MMP-2, MMP-9, and TIMP-1 proteins were measured by ELISA. Healthy controls provided plasma and urine for comparison (n = 31). In patients, the relationship of urinary and plasma levels with renal expression of MMP-2 and MMP-9 and clinical and histological disease activity was studied. Renal MMP expression was compared between patients and controls (n = 8). Urinary MMP-2 and MMP-9 activity and urinary and plasma TIMP-1 levels were significantly higher in patients than in controls. In glomeruli of patients, both MMP-2 and MMP-9 expression reflected active glomerular inflammation. Urinary activity of MMP-2 and MMP-9 did not correlate with renal MMP expression or plasma levels. Urinary MMP activity correlated negatively with glomerular inflammation, but positively with fibrous crescents. Urinary MMP-2 and TIMP-1 levels showed a positive correlation with tubulointerstitial damage and a negative correlation with creatinine clearance. Urinary MMP-2, MMP-9, and TIMP-1 are elevated in AAV but do not reflect renal MMP expression and glomerular inflammation. However, urinary MMP-2 activity and TIMP-1 levels reflect tubulointerstitial damage and correlate negatively with creatinine clearance at biopsy.
Although often supersaturated with mineral salts such as calcium phosphate and calcium oxalate, normal urine possesses an innate ability to keep them from forming harmful crystals. This inhibitory activity has been attributed to the presence of urinary macromolecules, although controversies abound regarding their role, or lack thereof, in preventing renal mineralization. Here, we show that 10% of the mice lacking osteopontin (OPN) and 14.3% of the mice lacking Tamm-Horsfall protein (THP) spontaneously form interstitial deposits of calcium phosphate within the renal papillae, events never seen in wild-type mice. Lack of both proteins causes renal crystallization in 39.3% of the double-null mice. Urinalysis revealed elevated concentrations of urine phosphorus and brushite (calcium phosphate) supersaturation in THP-null and OPN/THP-double null mice, suggesting that impaired phosphorus handling may be linked to interstitial papillary calcinosis in THP- but not in OPN-null mice. In contrast, experimentally induced hyperoxaluria provokes widespread intratubular calcium oxalate crystallization and stone formation in OPN/THP-double null mice, while completely sparing the wild-type controls. Whole urine from OPN-, THP-, or double-null mice all possessed a dramatically reduced ability to inhibit the adhesion of calcium oxalate monohydrate crystals to renal epithelial cells. These data establish OPN and THP as powerful and functionally synergistic inhibitors of calcium phosphate and calcium oxalate crystallization in vivo and suggest that defects in either molecule may contribute to renal calcinosis and stone formation, an exceedingly common condition that afflicts up to 12% males and 5% females.
Various antenatal events impair nephrogenesis in humans as well as in several animal models. The consecutive low nephron endowment may contribute to an increased risk for cardiovascular and renal diseases in adulthood. However, little knowledge is available on the influence of the postnatal environment, especially nutrition, on nephrogenesis. Moreover, the consequences of early postnatal nutrition in late adulthood are not clear. We used a model of early postnatal overfeeding (OF) induced by reduction of litter size (3 pups/litter) in rats. Systolic blood pressure (SBP; plethysmography), glomerular filtration rate (clearance of creatinine), glomerular number and volume, and glomerulosclerosis were evaluated in 22-mo-old aging offspring. Early postnatal OF was associated with increased weight gain during the suckling period (+40%, P < 0.01) and a 20% increase in glomerular number (P < 0.05). However, an increase in SBP at 12 mo by an average of 18 mmHg and an increase in proteinuria (2.6-fold) and glomerulosclerosis at 22 mo of age were observed in OF male offspring compared with controls. In conclusion, early postnatal OF in the rat enhances postnatal nephrogenesis, but elevated blood pressure and glomerulosclerosis are still observed in male adults. Factors other than glomerular number reduction are likely to contribute to the arterial hypertension induced by early postnatal OF.
Cover: Immunohistochemical labeling of epithelial sodium channel ENaC in renal collecting duct principal cells. See related article by de Seigneux S, Nielsen J, Olesen ETB, Dimke H, Kwon T-H, Frøkiær J, and Nielsen S. Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney. Am J Physiol Renal Physiol. 293: F87–F99, 2007.