Imbalances of β-adrenoceptor (β-AR) and muscarinic ACh receptor (mAChR) input are thought to underlie perinatal cardiovascular abnormalities in conditions such as sudden infant death syndrome. Administration of isoproterenol, a β1/β2-AR agonist, to neonatal rats on postnatal days (PN)2–5 caused downregulation of cardiac m2AChRs and a corresponding decrement in their control of adenylyl cyclase activity. Terbutaline, a β2-selective agonist that crosses the placenta and the blood-brain barrier, was also effective when given either on PN 2–5 or during gestational days 17–20. Terbutaline failed to downregulate brain m2AChRs, even though it downregulated β-ARs; β-ARs and m2AChRs are located on different cell populations in the brain, but they are on the same cells in the heart. Destruction of catecholaminergic neurons with neonatal 6-hydroxydopamine upregulated cardiac but not brain m2AChRs. These results suggest that perinatal β-AR stimulation shifts cardiac receptor production away from the generation of m2AChRs so that the development of sympathetic innervation acts as a negative modulator of cholinergic function. Accordingly, tocolytic therapy with β-AR agonists may compromise the perinatal balance of adrenergic and cholinergic inputs.
The present experiments were carried out to investigate the role of endogenously produced NO in modulating renal function during postnatal maturation under physiological conditions. In conscious, chronically instrumented lambs aged ∼1 (n= 8) and ∼6 wk (n = 8) of postnatal life, various parameters of glomerular and tubular function were measured for 1 h before and 1 h after intravenous injection of 20 mg/kg ofN G-nitro-l-arginine methyl ester (l-NAME; experiment 1) or its inactive isomerd-NAME (experiment 2). After administration ofl-NAME to 1-wk-old lambs, glomerular filtration rate (GFR) and filtration factor (FF) decreased by ∼50% at 20 min, remaining decreased at 60 min. In 6-wk-old lambs, GFR and FF remained constant after l-NAME. Proximal fractional Na+reabsorption decreased after l-NAME administration to lambs aged 6 wk, resulting in a prompt natriuresis; this was sustained for 60 min. There were no effects of l-NAME on proximal fractional Na+ reabsorption in 1-wk-old lambs. In 6-wk-old lambs, urinary flow rate increased by ∼500%, free water clearance increased by ∼50%, and urinary osmolality decreased by ∼60% afterl-NAME administration; no effects on these variables were measured in 1-wk-old lambs. The diuresis after l-NAME administration to 6-wk-old lambs was unaccompanied by any changes in plasma levels of arginine vasopressin. There were no effects ofd-NAME on any of the measured variables. We conclude that endogenously produced nitric oxide modulates glomerular and tubular function in an age-dependent manner.
Spontaneous fetal swallowing occurs at a markedly higher rate compared with spontaneous adult drinking activity. This high rate of fetal swallowing is critical for amniotic fluid volume regulation. Central NO is critical for maintaining the normal rate of fetal swallowing, as nonselective inhibition of NO (with centralN G -nitro-l-arginine methyl ester) suppresses spontaneous and angiotensin II (ANG II)-stimulated swallowing. We sought to differentiate the contributions of central endothelial vs. neuronal NO in the regulation of spontaneous and stimulated fetal swallowing, using a selective neuronal NO synthase (nNOS) inhibitor. Six time-dated pregnant ewes and fetuses were chronically prepared with fetal vascular and intracerebroventricular (icv) catheters and electrocorticogram (ECoG) and esophageal electromyogram electrodes and studied at 130 ± 1 days of gestation. After an initial 2-h baseline period (0–2 h), the selective nNOS inhibitor N-propyl-l-arginine (NPLA) was injected icv (2–4 h). At 4 h, the dose of NPLA was repeated, together with ANG II, and fetal swallowing was monitored for a final 2 h. Four fetuses also received an identical control study (on an alternate day) in which NPLA was replaced with artificial cerebrospinal fluid (aCSF). Suppression of nNOS by icv NPLA significantly reduced mean (± SE) spontaneous fetal swallowing (1.35 ± 0.12 to 0.50 ± 0.07 swallows/min; P< 0.001). Injection of ANG II in the presence of NPLA had no dipsogenic effect on fetal swallowing (0.68 ± 0.09 swallows/min). In the aCSF study, icv aCSF did not change fetal swallowing (0.93 ± 0.10 vs. 0.95 ± 0.09 swallows/min), whereas icv ANG II resulted in a significant increase in the rate of fetal swallowing (2.0 ± 0.04 swallows/min; P = 0.001). We speculate that the suppressive dipsogenic effects of central NPLA indicate that spontaneous and ANG II- stimulated fetal swallowing is dependent on central nNOS activity.
Neuropeptide Y (NPY) has prominent cardiovascular effects in mammals and sharks, but no such effect has previously been demonstrated in any teleost fish. In the Atlantic cod, we found that cod NPY (10−10–10−6 M) relaxed celiac arteries precontracted with epinephrine, and weak contractions were elicited in intestinal ring preparations. A few NPY-immunoreactive nerve fibers were present along small gut arteries. The results suggest that cod NPY produces vasorelaxation both by a direct action on smooth muscle and by release of prostaglandins, but with no involvement of nitric oxide, leukotrienes, or endothelium-derived relaxing factors. An additional indirect effect involving another neurotransmitter may occur. Cod NPY (10−7 M) and human NPY (10−7 M) had identical effects on the vessels. Small differences only in the effects of porcine [Leu31,Pro34]NPY, NPY-(13–36), and cod NPY suggest the presence of a Y1 subfamily receptor, similar to the zebrafish Ya receptor. A physiological role for NPY in teleost vasculature is concluded, but surprisingly the effect, a vasodilation, is opposite to that in mammals and is mediated by prostaglandins.
Although the sympathetic nervous system (SNS) plays a major role in mediating the peripheral stress response, due consideration is not usually given to the effects of prolonged stress on the SNS. The present study examined changes in neurotransmission in the SNS after exposure of mice (BALB/c) to stressful housing conditions. Focal extracellular recording of excitatory junction currents (EJCs) was used as a relative measure of neurotransmitter release from different regions of large surface areas of the mouse vas deferens. Mice were either group housed (control), isolation housed (social deprivation), group housed in a room containing rats (rat odor stress), or isolation housed in a room containing rats (concurrent stress). Social deprivation and concurrent stressors induced an increase of 30 and 335% in EJC amplitude, respectively. The success rate of recording EJCs from sets of varicosities in the concurrent stressor group was greater compared with all other groups. The present study has shown that some common animal housing conditions act as stressors and induce significant changes in sympathetic neurotransmission.
In situ rabbit hearts were subjected to 15 min of regional myocardial ischemia, and at various time points of reperfusion, antioxidant enzyme activity and mRNA expression were measured in ischemic and nonischemic myocardium. Catalase activity increased significantly in both ischemic and nonischemic myocardium, peaking at 1 h after reperfusion and then gradually returning to the control level. Northern blot analysis showed enhanced expression of catalase mRNA in both areas. There were no changes in redox status, because glutathione levels were not altered by ischemia-reperfusion (I/R). We also tested whether catalase activation in the heart results from signaling pathways that might influence not only the heart but also other organs. We found that catalase activity in the brain was increased after myocardial I/R and ischemic stress to the intestine was equipotent to myocardial I/R in catalase activation. We next sought to elucidate the possible involvement of the adrenergic system in catalase stimulation induced by ischemic stimuli. After pretreatment with the α-adrenergic receptor antagonist prazosin, I/R failed to increase catalase activity in the heart and brain. Intravenous norepinephrine increased catalase activity in the heart, brain, and liver. This study shows that brief I/R activates a signaling mechanism to induce catalase activation in multiple organs and the α-adrenergic system is involved as an intermediate pathway in this signal transmission.
We examined modulation by nitric oxide (NO) of sympathetic neurotransmitter release and vasoconstriction in the isolated pump-perfused rat kidney. Electrical renal nerve stimulation (RNS; 1 and 2 Hz) increased renal perfusion pressure and renal norepinephrine (NE) efflux. Nonselective NO synthase (NOS) inhibitors [N ω-nitro-l-arginine methyl ester (l-NAME) orN ω-nitro-l-arginine], but not a selective neuronal NO synthase inhibitor (7-nitroindazole sodium salt), suppressed the NE efflux response and enhanced the perfusion pressure response. Pretreatment with l-arginine prevented the effects of l-NAME on the RNS-induced responses. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), which eliminates NO by oxidizing it to NO2, suppressed the NE efflux response, whereas the perfusion pressure response was less susceptible to carboxy-PTIO. 8-Bromoguanosine cGMP suppressed and a guanylate cyclase inhibitor [4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one] enhanced the RNS-induced perfusion pressure response, but neither of these drugs affected the NE efflux response. These results suggest that endogenous NO facilitates the NE release through cGMP-independent mechanisms, NO metabolites formed after NO2 rather than NO itself counteract the vasoconstriction, and neuronal NOS does not contribute to these modulatory mechanisms in the sympathetic nervous system of the rat kidney.
We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven times over 8 wk in the same dog. Angiotensin II decreased TRBF (350 ± 16 to 299 ± 15 ml/min), an effect completely blocked by candesartan (TRBF 377 ± 17 ml/min). Subsequent endothelin-1 infusion reduced TRBF to 268 ± 20 ml/min. Bilateral carotid occlusion (8 sessions in 3 dogs) increased arterial blood pressure by 49% and decreased TRBF by 12%, providing an increase in renal vascular resistance of 69%. Dynamic analysis showed autoregulation of renal blood flow in the frequency range <0.06–0.07 Hz, with a peak in the transfer function at 0.03 Hz. It is concluded that continuous measurement of TRBF by aortic blood flow subtraction is a practical and reliable method that allows direct comparison of excretory function and renal blood flow from two kidneys. The method also allows direct comparison between TRBF and flow in the caudal aorta.
Appropriate nephron function is dependent on the intrarenal arrangement of blood vessels. The preferred and primary means to study the architecture of intrarenal circulation has been by filling it with opaque substances such as india ink, radio-opaque contrast material, or various polymers for study by light or scanning electron microscopy. With such methodologies, superficial vessels may obscure deep vessels and little quantitative information may be obtained. Serial-section microtomy has not been practical because of problems relating to alignment and registration of adjacent sections, lost sections, and preparation time and effort. Microcomputed tomography (micro-CT) overcomes such limitations and provides a means to study the three-dimensional architecture of filled vessels within an intact rodent kidney and to obtain more quantitative information. As an example of micro-CT's capabilities, we review the use of micro-CT to study the alterations in renal microvasculature caused by the development of liver cirrhosis after chronic bile duct ligation. In this example, micro-CT evidence shows a selective decrease in cortical vascular filling in the kidney, with a maintenance of medullary vascular filling. These changes may contribute to the salt and water retention that accompanies cirrhosis. These results indicate that micro-CT is a promising method to evaluate renal vascular architecture in the intact rodent kidney relative to physiological and pathological function.
Muscle blood flow is regulated to meet the metabolic needs of the tissue. With the vasculature arranged as a successive branching of arterioles and the larger, >50 μm, arterioles providing the major site of resistance, an increasing metabolic demand requires the vasodilation of the small arterioles first then the vasodilation of the more proximal, larger arterioles. The mechanism(s) for the coordination of this ascending vasodilation are not clear and may involve a conducted vasodilation and/or a flow-dependent response. The close arteriolar-venular pairing provides an additional mechanism by which the arteriolar diameter can be increased due to the diffusion of vasoactive substances from the venous blood. Evidence is presented that the venular endothelium releases a relaxing factor, a metabolite of arachidonic acid, that will vasodilate the adjacent arteriole. The stimulus for this release is not known, but it is hypothesized that hypoxia-induced ATP release from red blood cells may be responsible for the stimulation of arachidonic release from the venular endothelial cells. Thus the venous circulation is in an optimal position to monitor the overall metabolic state of the tissue and thus provide a feedback regulation of arteriolar diameter.
Fat distribution varies among individuals with similar body fat content. Innate differences in adipose cell characteristics may contribute because lipid accumulation and lipogenic enzyme activities vary among preadipocytes cultured from different fat depots. We determined expression of the adipogenic transcription factors peroxisome proliferator activated receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-α (C/EBP-α) and their targets in abdominal subcutaneous, mesenteric, and omental preadipocytes cultured in parallel from obese subjects. Subcutaneous preadipocytes, which had the highest lipid accumulation, glycerol-3-phosphate dehydrogenase (G3PD) activity, and adipocyte fatty acid binding protein (aP2) abundance, had highest PPAR-γ and C/EBP-α expression. Levels were intermediate in mesenteric and lowest in omental preadipocytes. Overexpression of C/EBP-α in transfected omental preadipocytes enhanced differentiation. The proportion of differentiated cells in colonies derived from single subcutaneous preadipocytes was higher than in mesenteric or omental clones. Only cells that acquired lipid inclusions exhibited C/EBP-α upregulation, irrespective of depot origin. Thus regional variation in adipogenesis depends on differences at the level of transcription factor expression and is a trait conferred on daughter cells.
ADrosophila gene (capability, capa) at 99D on chromosome 3R potentially encodes three neuropeptides: GANMGLYAFPRV-amide (capa-1), ASGLVAFPRV-amide (capa-2), and TGPSASSGLWGPRL-amide (capa-3). Capa-1 and capa-2 are related to the lepidopteran hormone cardioacceleratory peptide 2b, while capa-3 is a novel member of the pheromone biosynthesis-activating neuropeptide/diapause hormone/pyrokinin family. By immunocytochemistry, we identified four pairs of neuroendocrine cells likely to release the capa peptides into the hemolymph: one pair in the subesophageal ganglion and the other three in the abdominal neuromeres. In the Malpighian (renal) tubule, capa-1 and capa-2 increase fluid secretion rates, stimulate nitric oxide production, and elevate intracellular Ca2+ and cGMP in principal cells. Capa-stimulated fluid secretion, but not intracellular Ca2+ concentration rise, is inhibited by the guanylate cyclase inhibitor methylene blue. The actions of capa-1 and capa-2 are not synergistic, implying that both act on the same pathways in tubules. The capa gene is thus the first to be shown to encode neuropeptides that act on renal fluid production through nitric oxide.
Negative chronotropic and smooth muscle contractile responses to the nonselective muscarinic agonist carbamylcholine were compared in isolated tissues from M3-muscarinic receptor knockout and wild-type mice. Carbamylcholine (10−8–3.0 × 10−5 M) induced a concentration-dependent decrease in atrial rate that was similar in atria from M3-receptor knockout and wild-type mice, indicating that M3 receptors were not involved in muscarinic receptor-mediated atrial rate decreases. In contrast, the M3 receptor was a major muscarinic receptor involved in smooth muscle contraction of stomach fundus, urinary bladder, and trachea, although differences existed in the extent of M3-receptor involvement among the tissues. Contraction to carbamylcholine was virtually abolished in urinary bladder from M3-receptor knockout mice, suggesting that contraction was predominantly due to M3-receptor activation. However, ∼50–60% maximal contraction to carbamylcholine occurred in stomach fundus and trachea from M3-receptor knockout mice, indicating that contraction in these tissues was also due to M2-receptor activation. High concentrations of carbamylcholine relaxed the stomach fundus from M3-receptor knockout mice by M1-receptor activation. Thus M3-receptor knockout mice provided unambiguous evidence that M3 receptors 1) play no role in carbamylcholine-induced atrial rate reduction, 2) are the predominant receptor mediating carbamylcholine-induced urinary bladder contractility, and 3) share contractile responsibility with M2 receptors in mouse stomach fundus and trachea.
We utilized variations in caloric availability and ambient temperature (Ta) to examine interrelationships between energy expenditure and cardiovascular function in mice. Male C57BL/6J mice (n = 6) were implanted with telemetry devices and housed in metabolic chambers for measurement of mean arterial pressure (MAP), heart rate (HR), O2 consumption (V˙o 2), and locomotor activity. Fasting (Ta = 23°C), initiated at the onset of the dark phase, resulted in large and transient depressions in MAP, HR, V˙o 2, and locomotor activity that occurred during hours 6–17, which suggests torporlike episodes. Food restriction (14 days, 60% of baseline intake) at Ta = 23°C resulted in progressive reductions in MAP and HR across days that were coupled with an increasing occurrence of episodic torporlike reductions in HR (<300 beats/min) and V˙o 2 (<1.0 ml/min). Exposure to thermoneutrality (Ta = 30°C,n = 6) reduced baseline light-period MAP (−14 ± 2 mmHg) and HR (−184 ± 12 beats/min). Caloric restriction at thermoneutrality produced further reductions in MAP and HR, but indications of torporlike episodes were absent. The results reveal that mice exhibit robust cardiovascular responses to both acute and chronic negative energy balance. Furthermore, we conclude that Tais a very important consideration when assessing cardiovascular function in mice.
Spiny dogfish shark (Squalus acanthias) lateral and IV choroid plexuses (CPs) are ultrastructurally similar to the corresponding tissues of rat. However, shark IV CP is proportionally larger and easily accessible. Moreover, this epithelial sheet can be halved and studied in Ussing flux chambers. We have used confocal fluorescence microscopy and radiotracer techniques to characterize transepithelial transport of the organic anions (OAs) fluorescein (FL) and 2,4-dichlorophenoxyacetic acid (2,4-D), respectively, by shark CP. Lateral and IV CP accumulated 1 μM FL, with highest levels in the underlying extracellular spaces, intermediate levels in epithelial cells, and lowest levels in the medium. 2,4-D and probenecid inhibited FL accumulation in cells and extracellular spaces, suggesting that these substrates compete for common carriers. Unidirectional absorptive [cerebrospinal fluid (CSF)-to-blood] and secretory (blood-to-CSF) fluxes of 10 μM [14C]2,4-D were measured under short-circuited conditions in IV CP mounted in Ussing chambers. 2,4-D underwent net absorption, with an average flux ratio of 7. Probenecid, 2,4,5-trichlorophenoxyacetic acid, and 5-hydroxyindolacetic acid reduced net absorption, reversibly inhibiting unidirectional absorption, with no effect on secretion. Ouabain irreversibly reduced net 2,4-D absorption and cellular and extracellular accumulation of FL, suggesting energetic coupling of OA absorption to Na+transport. Collectively, these data indicate that shark CP actively removes OAs from CSF by a process that is specific and active.
Cetaceans (whales and dolphins) always excrete urine with an osmolality markedly higher than that of plasma. Although the mechanisms by which cetaceans concentrate urine have not been elucidated, data support a role for medullary urea accumulation in this process, as is the case for terrestrial mammals. Therefore, we hypothesized that facilitated urea transporters are present in the kidney of cetaceans. Using 5′/3′-rapid amplification of cDNA ends, we cloned a 2.7-kb cDNA from the kidney of the short-finned pilot whale Globicephala macrorhynchus. The putative open-reading frame encoded a 397-amino acid protein [pilot whale urea transporter A2 (whUT-A2)] that has 94% amino acid sequence identity to the A2 isoform of the human urea transporter (hUT-A2). Heterologous expression of whUT-A2 cRNA in Xenopus oocytes induced phloretin-inhibitable urea transport. Although Northern analysis and RT-PCR indicated that whUT-A2 was exclusively expressed in kidney, Western blotting using a polyclonal antibody to rat UT-A1/UT-A2 detected various immunoreactive proteins in kidney and other tissues. Furthermore, RT-PCR analysis suggested the presence of alternatively spliced UT-A transcripts in the kidney as well as extrarenal tissues. We conclude that renal urea transporters are highly conserved among mammals inhabiting terrestrial and pelagic environments. A urea-based concentrating mechanism, presumably evolved to meet the demands of an arid terrestrial environment, may have contributed a fortuitous preadaptation that enabled the ancestors of cetaceans to reinvade the sea.
The turtle Trachemys scriptais one of a limited group of vertebrates that can withstand hours to days without oxygen. One facet of anoxic survival is the turtle's ability to maintain basal extracellular glutamate levels, whereas in most vertebrates, anoxia triggers massive excitotoxic glutamate release. We investigated glutamate release and reuptake in the anoxic turtle and the effects of adenosine and ATP-sensitive potassium (KATP) channels on glutamate homeostasis. Striatal extracellular glutamate was measured in anesthetized T. scripta by microdialysis in normoxia and over 2-h anoxia. Glutamate release is decreased by 44% in the early anoxic turtle; this anoxia-induced decrease in glutamate release was prevented when KATP channels and adenosine receptors were blocked simultaneously but not when either mechanism was blocked individually. We hypothesize that the continued release and reuptake of glutamate during anoxia help maintain neuronal tone and aid in the recovery of a functional neuronal network after long periods of anoxia, whereas activation of adenosine and/or KATP conserves energy by reducing glutamate release and lowering transport costs.
Aging alters many aspects of circadian rhythmicity, including responsivity to phase-shifting stimuli and the amplitude of the rhythm of melatonin secretion. As melatonin is both an output from and an input to the circadian clock, we hypothesized that the decreased melatonin levels exhibited by old hamsters may adversely impact the circadian system as a whole. We enhanced the diurnal rhythm of melatonin by feeding melatonin to young and old hamsters. Animals of both age groups on the melatonin diet showed larger phase shifts than control-fed animals in response to an injection with the benzodiazepine triazolam at a circadian time known to induce phase advances in the activity rhythm of young animals. Thus melatonin treatment can increase the sensitivity of the circadian timing system of young animals to a nonphotic stimulus, and the ability to increase this sensitivity persists into old age, indicating exogenous melatonin might be useful in reversing at least some age-related changes in circadian clock function.
By pharmacological manipulation of endogenous adenosine, using chemically distinct methods, we tested the hypothesis that endogenous adenosine tempers proinflammatory cytokine responses and oxyradical-mediated tissue damage during endotoxemia and sepsis. Rats were pretreated with varying doses of pentostatin (PNT; adenosine deaminase inhibitor) or 8-sulfophenyltheophylline (8-SPT; adenosine receptor antagonist) and then received either E. coli endotoxin (lipopolysaccharide; 0.01 or 2.0 mg/kg) or a slurry of cecal matter in 5% dextrose in water (200 mg/kg). Resultant levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10 were measured in serum and in liver and spleen. Untreated, 2 mg/kg lipopolysaccharide elevated serum TNF-α, IL-1β, and IL-10. PNT dose dependently attenuated, without ablating, the elevation in serum TNF-α and IL-1β and raised liver and spleen IL-10. PNT also attenuated elevation of TNF-α in serum, liver, and spleen at 4 and 24 h after sepsis induction, and 8-SPT resulted in higher proinflammatory cytokines. Modulating endogenous adenosine was also effective in exacerbated (8-SPT) or diminished (PNT) tissue peroxidation. Survival from sepsis was also improved when PNT was used as a posttreatment. These data indicate that endogenous adenosine is an important modulatory component of systemic inflammatory response syndromes. These data also indicate that inhibition of adenosine deaminase may be a novel and viable therapeutic approach to managing the systemic inflammatory response syndrome without ablating important physiological functions.
We investigated the responses of the hypothalamic-pituitary-adrenal (HPA) axis during experimental colitis induced by intracolonic administration of 2,4,6-trinitrobenzenesulfonic acid in the rat. On days 3 and7 after induction of colitis, the corticotropin-releasing hormone (CRH) mRNA level in the parvocellular paraventricular nucleus (pPVN) of the hypothalamus was reduced, the plasma ACTH level remained at the basal level, and the plasma corticosterone (Cort) level was high. Induction of colitis on day 3 after adrenalectomy with Cort pellet replacement (ADX + Cort) resulted in a marked increase in CRH mRNA on day 7 after induction of colitis compared with noncolitic ADX + Cort animals. Pair feeding to match the food intake of the colitic animals resulted in no significant change in CRH mRNA in the pPVN, plasma ACTH, and Cort compared with healthy control animals. These findings indicated that CRH mRNA expression in the pPVN was inhibited by glucocorticoid feedback during this experimental colitis, and the decrease in food intake during colitis was not simply responsible for the expression of CRH mRNA. It is inferred that the HPA axis including the CRH level in the pPVN is altered in patients with inflammatory bowel disease.
The inflammatory response induced by bacterial lipopolysaccharide (LPS) has profound metabolic and physiological effects. Thus hepatic glucose production is depressed after LPS administration, which is, at least in part, due to the downregulation of phosphoenolpyruvate carboxykinase (PEPCK) expression. PEPCK is a key regulatory enzyme of the gluconeogenic pathway. Expression of heat shock proteins (hsps) is a well-conserved response to stress correlated with protection from subsequent insults including inflammation. In this study, the expression of PEPCK was observed to be preserved after injection of LPS in heat shock-pretreated mice. Protection of PEPCK expression was limited to the time after heat shock treatment that displayed hsp70. Comparison of the transcription rate and mRNA levels of PEPCK after LPS injection between mice that were heat shock pretreated or not indicated that the preservation of PEPCK expression was not due to initial protection from the LPS challenge. On the contrary, it was mediated by a rapid recovery after the LPS insult at the level of transcription. These observations suggest that the mechanism of heat shock-mediated protection (stress tolerance) after LPS challenge is due to an increase in the capacity of the organism to recover rather than deterrence from the insult.
Tumor necrosis factor (TNF)-α stimulates the secretion of the adipocyte-derived hormone leptin. However, the cellular mechanisms by which TNF-α influences leptin production are poorly understood. To examine this issue, epididymal fat pads were isolated from mice and cultured in recombinant murine TNF-α (100 ng/ml). Compared with medium-treated controls, steady-state leptin expression was increased in TNF-α-treated explants. Culture with inhibitors of translation (cycloheximide) or transcription (actinomycin-D) abrogated the induction of leptin following TNF-α. Explants were also cultured in the presence of the anti-inflammatory p38 mitogen-activated protein kinase inhibitor (SB-203580) or PG J2 metabolite [15-deoxy-Δ12,14-PG J2 (PGJ)] and then exposed to TNF-α. Both compounds completely abolished TNF-α-induced increases in leptin production. To test the relevance of this in vivo, mice were pretreated with PGJ and then given TNF-α. PGJ treatment markedly blunted the TNF-α-induced increase in leptin, TNF-α, and interleukin-6 gene expression in epididymal adipose tissue. Collectively, these data indicate that TNF-α acutely activates leptin expression and that anti-inflammatory agents can abrogate TNF-α-induced hyperleptinemia.
Depressed patients with and without a history of cardiovascular pathology display signs, such as elevated heart rate, decreased heart rate variability, and increased physiological reactivity to environmental stressors, which may indicate a predisposition to cardiovascular disease. The specific physiological mechanisms associating depression with such altered cardiovascular parameters are presently unclear. The current study investigated cardiovascular regulation in the chronic mild stress rodent model of depression and examined the specific autonomic nervous system mechanisms underlying the responses. Sprague-Dawley rats exposed to a series of mild, unpredictable stressors over 4 wk displayed anhedonia (an essential feature of human depression), along with elevated resting heart rate, decreased heart rate variability, and exaggerated pressor and heart rate responses to air jet stress. Results obtained from experiments studying autonomic blockade suggest that cardiovascular alterations in the chronic mild stress model are mediated by elevated sympathetic tone to the heart. The present findings have implications for the study of pathophysiological links between affective disorders and cardiovascular disease.
Nitric oxide (NO) biosynthesis increases during pregnancy and has been shown to suppress baroreceptor activity. The renal response to a simulated increase in circulating blood volume (atrial distension) is also attenuated at this time. We hypothesized that blocking NO biosynthesis during pregnancy would restore the renal response. Female rats were implanted with indwelling intracardiac balloons and central venous cannulas. After recovery, they were mated, and on day 14 of pregnancy, osmotic minipumps containing the NO synthase inhibitorN G-nitro-l-arginine methyl ester (l-NAME) or its inactive enantiomerN G-nitro-d-arginine methyl ester (d-NAME) (120 mg/2 ml at 10 μg/min) were implanted. In response to atrial distension (1 h), urine output increased in the d- and l-NAME-treated virgin rats. During pregnancy (day 20), this response was attenuated in the d-NAME-treated, but not thel-NAME-treated, animals, i.e., after a simulated increase in circulating blood volume, inhibition of NO biosynthesis restored the renal response of pregnant rats to that seen in virgin animals. We conclude that, during normal pregnancy, increased NO biosynthesis blunts the reflex renal response to atrial distension.
Locally released endothelin (ET)-1 has been recently identified as an important mediator of cardiac hypertrophy. It is still unclear, however, which primary stimulus specifically activates ET-dependent signaling pathways. We therefore examined in adult rats (n = 51) the effects of a selective ETA receptor antagonist in experimental models of cardiac hypertrophy, in which myocardial growth is predominantly initiated by a single primary stimulus. Rats were exposed to mechanical overload (ascending aortic stenosis), increased levels of circulating ANG II (ANG II infusion combined with hydralazine), or adrenergic stimulation (infusion of norepinephrine in a subpressor dose) for 7 days. All experimental treatments significantly increased left ventricular weight/body weight ratios compared with untreated rats, whereas systolic left ventricular peak pressure was increased only after ascending aortic stenosis. ETA receptor blockade exclusively reduced norepinephrine-induced cardiac hypertrophy and atrial natriuretic peptide gene expression. Blood pressure levels and heart rates remained unaffected during ETA receptor blockade in all experimental groups. These data indicate that in rat left ventricle, the ET-dependent signaling pathway leading to early development of cardiac hypertrophy and fetal gene expression is primarily activated by norepinephrine.
The hypothesis was tested that low-frequency vasomotions in individual vascular beds are integrated by the cardiovascular system, such that new fluctuations at additional frequencies occur in arterial blood pressure. In anesthetized rats (n = 8), the sympathetic splanchnic and renal nerves were simultaneously stimulated at combinations of frequencies ranging from 0.075 to 0.8 Hz. Blood pressure was recorded together with mesenteric and renal blood flow velocities. Dual nerve stimulation at low frequencies (<0.6 Hz) caused corresponding oscillations in vascular resistance and blood pressure, whereas higher stimulation frequencies increased the mean levels. Blood pressure oscillations were only detected at the individual stimulation frequencies and their harmonics. The strongest periodic responses in vascular resistance were found at 0.40 ± 0.02 Hz in the mesenteric and at 0.32 ± 0.03 Hz (P < 0.05) in the renal vascular bed. Thus frequency modulation of low-frequency vasomotions in individual vascular beds does not cause significant blood pressure oscillations at additional frequencies. Furthermore, our data suggest that sympathetic modulation of mesenteric vascular resistance can initiate blood pressure oscillations at slightly higher frequencies than sympathetic modulation of renal vascular resistance.
Regulation of atrial release of atrial natriuretic peptide (ANP) is coupled to changes in atrial dynamics. However, the mechanism by which mechanical stretch controls myocytic ANP release must be defined. The purpose of this study was to define the mechanism by which cAMP controls myocytic ANP release in perfused, beating rabbit atria. The cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX) inhibited myocytic ANP release. The activation of adenylyl cyclase with forskolin inhibited ANP release, which was a function of an increase in cAMP production. Inhibitors for L-type Ca2+ channels and protein kinase A (PKA) attenuated a minor portion of the forskolin-induced inhibition of ANP release. Gö-6976 and KN-62, which are specific inhibitors for protein kinase C-α and Ca2+/calmodulin kinase, respectively, failed to modulate forskolin-induced inhibition of ANP release. The nonspecific protein kinase inhibitor staurosporine blocked forskolin-induced inhibition of ANP release in a dose-dependent manner. Staurosporine but not nifedipine shifted the relationship between cAMP and ANP release. Inhibitors for L-type Ca2+ channels and PKA and staurosporine blocked forskolin-induced accentuation of atrial dynamics. These results suggest that cAMP inhibits atrial myocytic release of ANP via protein kinase-dependent and L-type Ca2+-channel-dependent and -independent signaling pathways.
Mechanical stimulation of the pharyngeal areas readily elicits reflex swallowing. However, it is much more difficult for electrical stimulation of the glossopharyngeal nerve (GPN) to evoke reflex swallowing than it is for stimulation of the superior laryngeal nerve (SLN) to do so. These paradoxical findings remain unexplained; hence, the main purpose of this study was to explain this contradiction by using a urethane-anesthetized rat. Mechanical stimulation easily elicited reflex swallowing from the pharynx. The posterior pillars, posterior pharyngeal wall, and the soft palate of the rat were extremely reflexogenic areas for swallowing. Sectioning the pharyngeal branch of the GPN (GPN-ph), however, eliminated the swallowing reflex from these areas. In contrast, sectioning the lingual branch of the GPN had no effect on the elicitation of swallowing. Electrical stimulation of the GPN-ph and SLN elicited sequentially occurring swallows. The relationship between stimulus frequency and the latency of swallowing for the GPN-ph was approximately the same as that for the SLN. These results indicate that the GPN-ph plays a major role in the initiation of reflex swallowing from the pharynx in rats.
In the present study, we tested the hypothesis that a single daily injection of the gut peptide CCK, together with continuous leptin infusion, would produce significantly greater loss of body weight than leptin alone. We found that a single daily intraperitoneal injection of CCK-8 (0.5 μg/kg) significantly enhanced the weight-reducing effects of 0.5 μg/day leptin infused continuously into the lateral ventricle of male Sprague-Dawley rats by osmotic minipump. However, CCK and leptin together did not enhance reduction of daily chow intake. Furthermore, there was no synergistic reduction of 30-min sucrose intake, although a significant main effect of both leptin and CCK was observed on sucrose intake. These results 1) confirm our previous reports of synergy between leptin and CCK on body weight, 2) demonstrate that enhancement of leptin-induced weight loss does not require bolus administration of leptin, and 3) suggest that enhanced body weight loss following leptin and CCK does not require synergistic reduction of food intake by leptin and CCK.
We previously demonstrated that amylin inhibits food intake and gastric emptying in rats with half-maximal effective doses (ED50s) of 8 and 3 pmol · kg−1 · min−1 and maximal inhibitions of 78 and 60%, respectively. In this study of identical design, rats received intravenous infusions of salmon calcitonin (sCT), rat calcitonin (rCT), rat calcitonin gene-related peptide (rCGRP), and rat adrenomedullin (rADM) for 3 h at dark onset, and food intake was measured for 17 h or for 15 min and gastric emptying of saline was measured during the final 5 min. sCT, rCGRP, and rADM inhibited food intake with estimated ED50s of 0.5, 26, and 35 pmol · kg−1 · min−1 and maximal inhibitions of 88, 90, and 49%, respectively. rCT was not effective at doses up to 100 pmol · kg−1 · min−1. sCT, rCGRP, rADM, and rCT inhibited gastric emptying with ED50s of 1, 130, 160, and 730 pmol · kg−1 · min−1 and maximal inhibitions of 60, 66, 60, and 33%, respectively. These results suggest that amylin and sCT may act by a common mechanism to decrease food intake, which includes inhibition of gastric emptying.
We developed an ELISA to measure heart-type fatty acid binding protein (H-FABP) in muscles of the western sandpiper (Calidris mauri), a long-distance migrant shorebird. H-FABP accounted for almost 11% of cytosolic protein in the heart. Pectoralis H-FABP levels were highest during migration (10%) and declined to 6% in tropically wintering female sandpipers. Premigratory birds increased body fat, but not pectoralis H-FABP, indicating that endurance flight training may be required to stimulate H-FABP expression. Juveniles making their first migration had lower pectoralis H-FABP than adults, further supporting a role for flight training. Aerobic capacity, measured by citrate synthase activity, and fatty acid oxidation capacity, measured by 3-hydroxyacyl-CoA-dehydrogenase and carnitine palmitoyl transferase activities, did not change during premigration but increased during migration by 6, 12, and 13%, respectively. The greater relative induction of H-FABP (+70%) with migration than of catabolic enzymes suggests that elevated H-FABP is related to the enhancement of uptake of fatty acids from the circulation. Citrate synthase, 3-hydroxyacyl-CoA-dehydrogenase, and carnitine palmitoyl transferase were positively correlated within individuals, suggesting coexpression, but enzyme activities were unrelated to H-FABP levels.
We hypothesized that food texture modifications might alter anticipatory reflexes, feeding behavior, and the postabsorptive consequences of ingestion. Two sets of complete meals with different textures but the same macronutrient composition were prepared. The first set was either a soup containing chunks of food (mixture) or the same soup blended until smooth (purée). The second set was either a rusk (R), a sandwich loaf (SL), or a liquid rusk meal (LR). We measured hunger and fullness feelings after ingestion of each food in a calibrated lunch, the ingestion rate, the duration between lunch and a spontaneous dinner request, the energy value, and the macronutrient composition of the ad libitum dinner. We also studied plasma modifications and respiratory gas exchanges from lunch to dinner. Feelings of hunger and fullness were not affected by texture modifications. The purée soup was consumed faster than the mixture (P < 0.05), and insulin, triacylglycerol, and energy expenditure were greater with the purée (P < 0.05). LR was less palatable than the other rusk lunch versions (P < 0.001), and R was ingested more slowly (P < 0.05). The lowest increase in plasma glucose occurred with SL, and the highest energy expenditure was seen with LR (P < 0.05). In humans, food texture modification affects not only eating patterns and palatability of ingestants but also metabolic management.
The consumption of nutrients by rodents is markedly influenced by the number of containers of each nutrient provided. Most rats given a choice from separate sources of protein, carbohydrate, and fat thrived if given one cup of each but half failed to thrive if given one cup of each and three extra cups of carbohydrate or fat. Rats given five bottles of sucrose solution and one bottle of water became fatter than rats given five bottles of water and one of sucrose. These studies in rats may point to a model for human obesity, in which the availability of food can override physiological controls of ingestion.