Reviews

Modeling Physiological Events in 2D vs. 3D Cell Culture

Published Online:https://doi.org/10.1152/physiol.00036.2016

References

  • 1. Amanullah A, Otero JM, Mikola M, Hsu A, Zhang J, Aunins J, Schreyer HB, Hope JA, Russo AP. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. Biotechnol Bioeng 106: 57–67, 2010. doi:10.1002/bit.22664.
    Crossref | PubMed | Web of Science | Google Scholar
  • 2. Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125: 3015–3024, 2012. doi:10.1242/jcs.079509.
    Crossref | PubMed | Web of Science | Google Scholar
  • 3. Beauchamp P, Moritz W, Kelm JM, Ullrich ND, Agarkova I, Anson BD, Suter TM, Zuppinger C. Development and characterization of a scaffold-free 3D spheroid model of induced pluripotent stem cell-derived human cardiomyocytes. Tissue Eng Part C Methods 21: 852–861, 2015. doi:10.1089/ten.tec.2014.0376.
    Crossref | PubMed | Web of Science | Google Scholar
  • 4. Bellas E, Chen CS. Forms, forces, and stem cell fate. Curr Opin Cell Biol 31: 92–97, 2014. doi:10.1016/j.ceb.2014.09.006.
    Crossref | PubMed | Web of Science | Google Scholar
  • 5. Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7: 816–823, 2008. doi:10.1038/nmat2269.
    Crossref | PubMed | Web of Science | Google Scholar
  • 6. Benton JA, Fairbanks BD, Anseth KS. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 30: 6593–6603, 2009. doi:10.1016/j.biomaterials.2009.08.031.
    Crossref | PubMed | Web of Science | Google Scholar
  • 7. Berens EB, Holy JM, Riegel AT, Wellstein A. A cancer cell spheroid assay to assess invasion in a 3D setting. J Vis Exp 105: 53409, 2015. doi:10.3791/53409.
    Crossref | PubMed | Web of Science | Google Scholar
  • 8. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 32: 760–772, 2014. doi:10.1038/nbt.2989.
    Crossref | PubMed | Web of Science | Google Scholar
  • 9. Bi YA, Kazolias D, Duignan DB. Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos 34: 1658–1665, 2006. doi:10.1124/dmd.105.009118.
    Crossref | PubMed | Web of Science | Google Scholar
  • 10. Bonnier F, Keating ME, Wróbel TP, Majzner K, Baranska M, Garcia-Munoz A, Blanco A, Byrne HJ. Cell viability assessment using the Alamar blue assay: a comparison of 2D and 3D cell culture models. Toxicol In Vitro 29: 124–131, 2015. doi:10.1016/j.tiv.2014.09.014.
    Crossref | PubMed | Web of Science | Google Scholar
  • 11. Bott K, Upton Z, Schrobback K, Ehrbar M, Hubbell JA, Lutolf MP, Rizzi SC. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31: 8454–8464, 2010. doi:10.1016/j.biomaterials.2010.07.046.
    Crossref | PubMed | Web of Science | Google Scholar
  • 12. Brewer GJ, Cotman CW. Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res 494: 65–74, 1989. doi:10.1016/0006-8993(89)90144-3.
    Crossref | PubMed | Web of Science | Google Scholar
  • 13. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1: 31–38, 2000. doi:10.1021/bm990017d.
    Crossref | PubMed | Web of Science | Google Scholar
  • 14. Burdick JA, Chung C, Jia X, Randolph MA, Langer R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6: 386–391, 2005. doi:10.1021/bm049508a.
    Crossref | PubMed | Web of Science | Google Scholar
  • 15. Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 15: 205–219, 2009. doi:10.1089/ten.tea.2008.0131.
    Crossref | PubMed | Web of Science | Google Scholar
  • 16. Buzhor E, Harari-Steinberg O, Omer D, Metsuyanim S, Jacob-Hirsch J, Noiman T, Dotan Z, Goldstein RS, Dekel B. Kidney spheroids recapitulate tubular organoids leading to enhanced tubulogenic potency of human kidney-derived cells. Tissue Eng Part A 17: 2305–2319, 2011. doi:10.1089/ten.tea.2010.0595.
    Crossref | PubMed | Web of Science | Google Scholar
  • 17. Cesarz Z, Tamama K. Spheroid Culture of Mesenchymal Stem Cells. Stem Cells Int 2016: 9176357, 2016. doi:10.1155/2016/9176357.
    Crossref | PubMed | Web of Science | Google Scholar
  • 18. Chaubey A, Ross KJ, Leadbetter RM, Burg KJL. Surface patterning: tool to modulate stem cell differentiation in an adipose system. J Biomed Mater Res B Appl Biomater 84: 70–78, 2008. doi:10.1002/jbm.b.30846.
    Crossref | PubMed | Web of Science | Google Scholar
  • 19. Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee HP, Lippens E, Duda GN, Mooney DJ. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15: 326–334, 2016. doi:10.1038/nmat4489.
    Crossref | PubMed | Web of Science | Google Scholar
  • 20. Chen VJ, Ma PX. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 25: 2065–2073, 2004. doi:10.1016/j.biomaterials.2003.08.058.
    Crossref | PubMed | Web of Science | Google Scholar
  • 21. Chitcholtan K, Asselin E, Parent S, Sykes PH, Evans JJ. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer. Exp Cell Res 319: 75–87, 2013. doi:10.1016/j.yexcr.2012.09.012.
    Crossref | PubMed | Web of Science | Google Scholar
  • 22. Choi SW, Yeh YC, Zhang Y, Sung HW, Xia Y. Uniform beads with controllable pore sizes for biomedical applications. Small 6: 1492–1498, 2010. doi:10.1002/smll.201000544.
    Crossref | PubMed | Web of Science | Google Scholar
  • 23. Chueh BH, Zheng Y, Torisawa YS, Hsiao AY, Ge C, Hsiong S, Huebsch N, Franceschi R, Mooney DJ, Takayama S. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device. Biomed Microdevices 12: 145–151, 2010. doi:10.1007/s10544-009-9369-6.
    Crossref | PubMed | Web of Science | Google Scholar
  • 24. Cimetta E, Figallo E, Cannizzaro C, Elvassore N, Vunjak-Novakovic G. Micro-bioreactor arrays for controlling cellular environments: design principles for human embryonic stem cell applications. Methods 47: 81–89, 2009. doi:10.1016/j.ymeth.2008.10.015.
    Crossref | PubMed | Web of Science | Google Scholar
  • 25. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 294: 1708–1712, 2001. doi:10.1126/science.1064829.
    Crossref | PubMed | Web of Science | Google Scholar
  • 26. DeForest CA, Polizzotti BD, Anseth KS. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8: 659–664, 2009. doi:10.1038/nmat2473.
    Crossref | PubMed | Web of Science | Google Scholar
  • 27. DeForest CA, Sims EA, Anseth KS. Peptide-functionalized click hydrogels with independently tunable mechanics and chemical functionality for 3D cell culture. Chem Mater 22: 4783–4790, 2010. doi:10.1021/cm101391y.
    Crossref | PubMed | Web of Science | Google Scholar
  • 28. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 310: 1139–1143, 2005. doi:10.1126/science.1116995.
    Crossref | PubMed | Web of Science | Google Scholar
  • 29. Dunn JCY, Tompkins RG, Yarmush ML. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J Cell Biol 116: 1043–1053, 1992. doi:10.1083/jcb.116.4.1043.
    Crossref | PubMed | Web of Science | Google Scholar
  • 30. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature 474: 179–183, 2011. doi:10.1038/nature10137.
    Crossref | PubMed | Web of Science | Google Scholar
  • 31. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12: 207–218, 2014. doi:10.1089/adt.2014.573.
    Crossref | PubMed | Web of Science | Google Scholar
  • 32. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689, 2006. doi:10.1016/j.cell.2006.06.044.
    Crossref | PubMed | Web of Science | Google Scholar
  • 33. Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14: 248–260, 2015. doi:10.1038/nrd4539.
    Crossref | PubMed | Web of Science | Google Scholar
  • 34. Ezzell RM, Toner M, Hendricks K, Dunn JC, Tompkins RG, Yarmush ML. Effect of collagen gel configuration on the cytoskeleton in cultured rat hepatocytes. Exp Cell Res 208: 442–452, 1993. doi:10.1006/excr.1993.1266.
    Crossref | PubMed | Web of Science | Google Scholar
  • 35. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31: 108–115, 2013. doi:10.1016/j.tibtech.2012.12.003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 36. Fierz FC, Beckmann F, Huser M, Irsen SH, Leukers B, Witte F, Degistirici O, Andronache A, Thie M, Müller B. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials 29: 3799–3806, 2008. doi:10.1016/j.biomaterials.2008.06.012.
    Crossref | PubMed | Web of Science | Google Scholar
  • 37. Figallo E, Cannizzaro C, Gerecht S, Burdick JA, Langer R, Elvassore N, Vunjak-Novakovic G. Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7: 710–719, 2007. doi:10.1039/b700063d.
    Crossref | PubMed | Web of Science | Google Scholar
  • 38. Fozdar DY, Soman P, Lee JW, Han LH, Chen S. Three-Dimensional Polymer Constructs Exhibiting a Tunable Negative Poisson’s Ratio. Adv Funct Mater 21: 2712–2720, 2011. doi:10.1002/adfm.201002022.
    Crossref | PubMed | Web of Science | Google Scholar
  • 39. Friedl P, Sahai E, Weiss S, Yamada KM. New dimensions in cell migration. Nat Rev Mol Cell Biol 13: 743–747, 2012. doi:10.1038/nrm3459.
    Crossref | PubMed | Web of Science | Google Scholar
  • 40. Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, Chen CS. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7: 733–736, 2010. doi:10.1038/nmeth.1487.
    Crossref | PubMed | Web of Science | Google Scholar
  • 41. Gauvin R, Chen YC, Lee JW, Soman P, Zorlutuna P, Nichol JW, Bae H, Chen S, Khademhosseini A. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33: 3824–3834, 2012. doi:10.1016/j.biomaterials.2012.01.048.
    Crossref | PubMed | Web of Science | Google Scholar
  • 42. Gjorevski N, Piotrowski AS, Varner VD, Nelson CM. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci Rep 5: 11458, 2015. doi:10.1038/srep11458.
    Crossref | PubMed | Web of Science | Google Scholar
  • 43. Gogoi P, Sepehri S, Zhou Y, Gorin MA, Paolillo C, Capoluongo E, Gleason K, Payne A, Boniface B, Cristofanilli M, Morgan TM, Fortina P, Pienta KJ, Handique K, Wang Y. Development of an automated and sensitive microfluidic device for capturing and characterizing circulating tumor cells (CTCs) from clinical blood samples. PLoS One 11: e0147400, 2016. doi:10.1371/journal.pone.0147400.
    Crossref | PubMed | Web of Science | Google Scholar
  • 44. Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater 14: 737–744, 2015. doi:10.1038/nmat4294.
    Crossref | PubMed | Web of Science | Google Scholar
  • 45. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 13: 264–269, 2003. doi:10.1016/S0962-8924(03)00057-6.
    Crossref | PubMed | Web of Science | Google Scholar
  • 46. Gu L, Mooney DJ. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat Rev Cancer 16: 56–66, 2016. doi:10.1038/nrc.2015.3.
    Crossref | PubMed | Web of Science | Google Scholar
  • 47. Hakkinen KM, Harunaga JS, Doyle AD, Yamada KM. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A 17: 713–724, 2011. doi:10.1089/ten.tea.2010.0273.
    Crossref | PubMed | Web of Science | Google Scholar
  • 48. Han L-H, Yu S, Wang T, Behn AW, Yang F. Microribbon-like elastomers for fabricating macroporous and highly flexible scaffolds that support cell proliferation in 3D. Adv Funct Mater 23: 346–358, 2013. doi:10.1002/adfm.201201212.
    Crossref | Web of Science | Google Scholar
  • 49. Han LH, Conrad B, Chung MT, Deveza L, Jiang X, Wang A, Butte MJ, Longaker MT, Wan D, Yang F. Winner of the Young Investigator Award of the Society for Biomaterials at the 10th World Biomaterials Congress, May 17-22, 2016, Montreal QC, Canada: Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model. J Biomed Mater Res A 104: 1321–1331, 2016. doi:10.1002/jbm.a.35715.
    Crossref | PubMed | Web of Science | Google Scholar
  • 50. Han LH, Lai JH, Yu S, Yang F. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation. Biomaterials 34: 4251–4258, 2013. doi:10.1016/j.biomaterials.2013.02.051.
    Crossref | PubMed | Web of Science | Google Scholar
  • 51. Han LH, Tong X, Yang F. Photo-crosslinkable PEG-based microribbons for forming 3D macroporous scaffolds with decoupled niche properties. Adv Mater 26: 1757–1762, 2014. doi:10.1002/adma.201304805.
    Crossref | PubMed | Web of Science | Google Scholar
  • 52. Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M, Okano T. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 7: 850–858, 2012. doi:10.1038/nprot.2012.027.
    Crossref | PubMed | Web of Science | Google Scholar
  • 53. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 4: 518–524, 2005. doi:10.1038/nmat1421.
    Crossref | PubMed | Web of Science | Google Scholar
  • 54. Hong Y, Guan J, Fujimoto KL, Hashizume R, Pelinescu AL, Wagner WR. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31: 4249–4258, 2010. doi:10.1016/j.biomaterials.2010.02.005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 55. Hsiao AY, Tung Y-C, Kuo C-H, Mosadegh B, Bedenis R, Pienta KJ, Takayama S. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed Microdevices 14: 313–323, 2012. doi:10.1007/s10544-011-9608-5.
    Crossref | PubMed | Web of Science | Google Scholar
  • 56. Huang AH, Niklason LE. Engineering of arteries in vitro. Cell Mol Life Sci 71: 2103–2118, 2014. doi:10.1007/s00018-013-1546-3.
    Crossref | PubMed | Web of Science | Google Scholar
  • 57. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 21: 745–754, 2011. doi:10.1016/j.tcb.2011.09.005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 58. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, Hamilton GA, Ingber DE. Microfabrication of human organs-on-chips. Nat Protoc 8: 2135–2157, 2013. doi:10.1038/nprot.2013.137.
    Crossref | PubMed | Web of Science | Google Scholar
  • 59. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 328: 1662–1668, 2010. doi:10.1126/science.1188302.
    Crossref | PubMed | Web of Science | Google Scholar
  • 60. Hwang CM, Sant S, Masaeli M, Kachouie NN, Zamanian B, Lee SH, Khademhosseini A. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication 2: 035003, 2010. doi:10.1088/1758-5082/2/3/035003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 61. Ihalainen TO, Aires L, Herzog FA, Schwartlander R, Moeller J, Vogel V. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat Mater 14: 1252–1261, 2015. doi:10.1038/nmat4389.
    Crossref | PubMed | Web of Science | Google Scholar
  • 62. Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatsura T, Minami H. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep 33: 1837–1843, 2015. doi:10.3892/or.2015.3767.
    Crossref | PubMed | Web of Science | Google Scholar
  • 63. Ji C, Khademhosseini A, Dehghani F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials 32: 9719–9729, 2011. doi:10.1016/j.biomaterials.2011.09.003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 64. Jiang H-L, Kim Y-K, Cho K-H, Jang Y-C, Choi Y-J, Chung J-H, Cho C-S. Roles of spheroid formation of hepatocytes in liver tissue engineering. Int J Stem Cells 3: 69–73, 2010. doi:10.15283/ijsc.2010.3.2.69.
    Crossref | PubMed | Google Scholar
  • 65. Jones HM, Barton HA, Lai Y, Bi YA, Kimoto E, Kempshall S, Tate SC, El-Kattan A, Houston JB, Galetin A, Fenner KS. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug Metab Dispos 40: 1007–1017, 2012. doi:10.1124/dmd.111.042994.
    Crossref | PubMed | Web of Science | Google Scholar
  • 66. Kawazoe N, Inoue C, Tateishi T, Chen G. A cell leakproof PLGA-collagen hybrid scaffold for cartilage tissue engineering. Biotechnol Prog 26: 819–826, 2010. doi:10.1002/btpr.375.
    Crossref | PubMed | Web of Science | Google Scholar
  • 67. Kesimer M, Kirkham S, Pickles RJ, Henderson AG, Alexis NE, Demaria G, Knight D, Thornton DJ, Sheehan JK. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways? Am J Physiol Lung Cell Mol Physiol 296: L92–L100, 2009. doi:10.1152/ajplung.90388.2008.
    Link | Web of Science | Google Scholar
  • 68. Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 131: 111002, 2009. doi:10.1115/1.3128729.
    Crossref | PubMed | Web of Science | Google Scholar
  • 69. Kimlin LC, Casagrande G, Virador VM. In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52: 167–182, 2013. doi:10.1002/mc.21844.
    Crossref | PubMed | Web of Science | Google Scholar
  • 70. Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324: 59–63, 2009. doi:10.1126/science.1169494.
    Crossref | PubMed | Web of Science | Google Scholar
  • 71. Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B. 3D Traction forces in cancer cell invasion. PLoS One 7: e33476, 2012. doi:10.1371/journal.pone.0033476.
    Crossref | PubMed | Web of Science | Google Scholar
  • 72. Kolind K, Leong KW, Besenbacher F, Foss M. Guidance of stem cell fate on 2D patterned surfaces. Biomaterials 33: 6626–6633, 2012. doi:10.1016/j.biomaterials.2012.05.070.
    Crossref | PubMed | Web of Science | Google Scholar
  • 73. LeCluyse EL, Audus KL, Hochman JH. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol 266: C1764–C1774, 1994.
    Link | Google Scholar
  • 74. Lee K, Hubbell JA. Tissue, cell and engineering. Curr Opin Biotechnol 24: 827–829, 2013. doi:10.1016/j.copbio.2013.08.001.
    Crossref | PubMed | Web of Science | Google Scholar
  • 75. Lee S-A, No Y, Kang E, Ju J, Kim D-S, Lee S-H. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip 13: 3529–3537, 2013. doi:10.1039/c3lc50197c.
    Crossref | PubMed | Web of Science | Google Scholar
  • 76. Lemmo S, Atefi E, Luker GD, Tavana H. Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-Cancer Drug Testing in 3D Culture. Cell Mol Bioeng 7: 344–354, 2014. doi:10.1007/s12195-014-0349-4.
    Crossref | PubMed | Web of Science | Google Scholar
  • 77. Li Q, Williams CG, Sun DD, Wang J, Leong K, Elisseeff JH. Photocrosslinkable polysaccharides based on chondroitin sulfate. J Biomed Mater Res A 68: 28–33, 2004. doi:10.1002/jbm.a.20007.
    Crossref | PubMed | Web of Science | Google Scholar
  • 78. Liao S, Chan CK, Ramakrishna S. Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C 28: 1189–1202, 2008. doi:10.1016/j.msec.2008.08.015.
    Crossref | Web of Science | Google Scholar
  • 79. Lu H, Ko YG, Kawazoe N, Chen G. Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates. Biomaterials 31: 5825–5835, 2010. doi:10.1016/j.biomaterials.2010.04.019.
    Crossref | PubMed | Web of Science | Google Scholar
  • 80. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23: 47–55, 2005. doi:10.1038/nbt1055.
    Crossref | PubMed | Web of Science | Google Scholar
  • 81. Mabry KM, Payne SZ, Anseth KS. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials 74: 31–41, 2016. doi:10.1016/j.biomaterials.2015.09.035.
    Crossref | PubMed | Web of Science | Google Scholar
  • 82. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6: 483–495, 2004. doi:10.1016/S1534-5807(04)00075-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 83. Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VK, Wootton DM, Lelkes PI, Zhou J. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27: 4399–4408, 2006. doi:10.1016/j.biomaterials.2006.03.049.
    Crossref | PubMed | Web of Science | Google Scholar
  • 84. Muzzarelli RA, Mattioli-Belmonte M, Tietz C, Biagini R, Ferioli G, Brunelli MA, Fini M, Giardino R, Ilari P, Biagini G. Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 15: 1075–1081, 1994. doi:10.1016/0142-9612(94)90093-0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 85. Nalayanda DD, Puleo C, Fulton WB, Sharpe LM, Wang TH, Abdullah F. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices 11: 1081–1089, 2009. doi:10.1007/s10544-009-9325-5.
    Crossref | PubMed | Web of Science | Google Scholar
  • 86. Napolitano AP, Chai P, Dean DM, Morgan JR. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng 13: 2087–2094, 2007. doi:10.1089/ten.2006.0190.
    Crossref | PubMed | Google Scholar
  • 87. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31: 5536–5544, 2010. doi:10.1016/j.biomaterials.2010.03.064.
    Crossref | PubMed | Web of Science | Google Scholar
  • 88. Nii M, Lai JH, Keeney M, Han LH, Behn A, Imanbayev G, Yang F. The effects of interactive mechanical and biochemical niche signaling on osteogenic differentiation of adipose-derived stem cells using combinatorial hydrogels. Acta Biomater 9: 5475–5483, 2013. doi:10.1016/j.actbio.2012.11.002.
    Crossref | PubMed | Web of Science | Google Scholar
  • 89. Ovsianikov A, Schlie S, Ngezahayo A, Haverich A, Chichkov BN. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J Tissue Eng Regen Med 1: 443–449, 2007. doi:10.1002/term.57.
    Crossref | PubMed | Web of Science | Google Scholar
  • 90. Pashneh-Tala S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft—past, present, and future. Tissue Eng Part B Rev. In press. doi:10.1089/ten.teb.2015.0100.
    Crossref | PubMed | Web of Science | Google Scholar
  • 91. Pineda ET, Nerem RM, Ahsan T. Differentiation patterns of embryonic stem cells in two- versus three-dimensional culture. Cells Tissues Organs 197: 399–410, 2013. doi:10.1159/000346166.
    Crossref | PubMed | Web of Science | Google Scholar
  • 92. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater 8: 457–470, 2009. doi:10.1038/nmat2441.
    Crossref | PubMed | Web of Science | Google Scholar
  • 94. Reis N, Gonçalves CN, Vicente AA, Teixeira JA. Proof-of-concept of a novel micro-bioreactor for fast development of industrial bioprocesses. Biotechnol Bioeng 95: 744–753, 2006. doi:10.1002/bit.21035.
    Crossref | PubMed | Web of Science | Google Scholar
  • 95. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature 507: 181–189, 2014. doi:10.1038/nature13118.
    Crossref | PubMed | Web of Science | Google Scholar
  • 96. Salerno A, Guarnieri D, Iannone M, Zeppetelli S, Netti PA. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Tissue Eng Part A 16: 2661–2673, 2010. doi:10.1089/ten.tea.2009.0494.
    Crossref | PubMed | Web of Science | Google Scholar
  • 97. Sarvi F, Jain K, Arbatan T, Verma PJ, Hourigan K, Thompson MC, Shen W, Chan PPY. Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4: 77–86, 2015. doi:10.1002/adhm.201400138.
    Crossref | PubMed | Web of Science | Google Scholar
  • 98. Scadden DT. The stem-cell niche as an entity of action. Nature 441: 1075–1079, 2006. doi:10.1038/nature04957.
    Crossref | PubMed | Web of Science | Google Scholar
  • 99. Scott EA, Nichols MD, Kuntz-Willits R, Elbert DL. Modular scaffolds assembled around living cells using poly(ethylene glycol) microspheres with macroporation via a non-cytotoxic porogen. Acta Biomater 6: 29–38, 2010. doi:10.1016/j.actbio.2009.07.009.
    Crossref | PubMed | Web of Science | Google Scholar
  • 100. Shimizu T, Yamato M, Kikuchi A, Okano T. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24: 2309–2316, 2003. doi:10.1016/S0142-9612(03)00110-8.
    Crossref | PubMed | Web of Science | Google Scholar
  • 101. Silva MMCG, Cyster LA, Barry JJA, Yang XB, Oreffo ROC, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM, Rose FRAJ. The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials 27: 5909–5917, 2006. doi:10.1016/j.biomaterials.2006.08.010.
    Crossref | PubMed | Web of Science | Google Scholar
  • 102. Sirenko O, Mitlo T, Hesley J, Luke S, Owens W, Cromwell EF. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol 13: 402–414, 2015. doi:10.1089/adt.2015.655.
    Crossref | PubMed | Web of Science | Google Scholar
  • 103. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater 21: 3307–3329, 2009. doi:10.1002/adma.200802106.
    Crossref | PubMed | Web of Science | Google Scholar
  • 104. Soldatow VY, Lecluyse EL, Griffith LG, Rusyn I. In vitro models for liver toxicity testing. Toxicol Res (Camb) 2: 23–39, 2013. doi:10.1039/C2TX20051A.
    Crossref | PubMed | Web of Science | Google Scholar
  • 105. Steinwachs J, Metzner C, Skodzek K, Lang N, Thievessen I, Mark C, Münster S, Aifantis KE, Fabry B. Three-dimensional force microscopy of cells in biopolymer networks. Nat Methods 13: 171–176, 2016. doi:10.1038/nmeth.3685.
    Crossref | PubMed | Web of Science | Google Scholar
  • 106. Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 310: 1135–1138, 2005. doi:10.1126/science.1106587.
    Crossref | PubMed | Web of Science | Google Scholar
  • 107. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science 346: 941–945, 2014. doi:10.1126/science.1253836.
    Crossref | PubMed | Web of Science | Google Scholar
  • 108. Suri S, Schmidt CE. Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering. Tissue Eng Part A 16: 1703–1716, 2010. doi:10.1089/ten.tea.2009.0381.
    Crossref | PubMed | Web of Science | Google Scholar
  • 109. Théry M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123: 4201–4213, 2010. doi:10.1242/jcs.075150.
    Crossref | PubMed | Web of Science | Google Scholar
  • 110. Torisawa YS, Takagi A, Nashimoto Y, Yasukawa T, Shiku H, Matsue T. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Biomaterials 28: 559–566, 2007. doi:10.1016/j.biomaterials.2006.08.054.
    Crossref | PubMed | Web of Science | Google Scholar
  • 111. Tung Y-C, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst (Lond) 136: 473–478, 2011. doi:10.1039/C0AN00609B.
    Crossref | PubMed | Web of Science | Google Scholar
  • 112. Underhill GH, Bhatia SN. High-throughput analysis of signals regulating stem cell fate and function. Curr Opin Chem Biol 11: 357–366, 2007. doi:10.1016/j.cbpa.2007.05.036.
    Crossref | PubMed | Web of Science | Google Scholar
  • 113. Wan Y, Wang Y, Liu Z, Qu X, Han B, Bei J, Wang S. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials 26: 4453–4459, 2005. doi:10.1016/j.biomaterials.2004.11.016.
    Crossref | PubMed | Web of Science | Google Scholar
  • 114. Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, Lupu R, Bissell MJ. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci USA 95: 14821–14826, 1998. doi:10.1073/pnas.95.25.14821.
    Crossref | PubMed | Web of Science | Google Scholar
  • 115. Wang K, Cai L-H, Lan B, Fredberg JJ. Hidden in the mist no more: physical force in cell biology. Nat Methods 13: 124–125, 2016. doi:10.1038/nmeth.3744.
    Crossref | PubMed | Web of Science | Google Scholar
  • 116. Wang T, Lai JH, Han L-H, Tong X, Yang F. Chondrogenic differentiation of adipose-derived stromal cells in combinatorial hydrogels containing cartilage matrix proteins with decoupled mechanical stiffness. Tissue Eng Part A 20: 2131–2139, 2014. doi:10.1089/ten.tea.2013.0531.
    Crossref | PubMed | Web of Science | Google Scholar
  • 117. Wang Y, Bella E, Lee CSD, Migliaresi C, Pelcastre L, Schwartz Z, Boyan BD, Motta A. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials 31: 4672–4681, 2010. doi:10.1016/j.biomaterials.2010.02.006.
    Crossref | PubMed | Web of Science | Google Scholar
  • 118. Whitesides GM. The origins and the future of microfluidics. Nature 442: 368–373, 2006. doi:10.1038/nature05058.
    Crossref | PubMed | Web of Science | Google Scholar
  • 119. Xiao J, Duan H, Liu Z, Wu Z, Lan Y, Zhang W, Li C, Chen F, Zhou Q, Wang X, Huang J, Wang Z. Construction of the recellularized corneal stroma using porous acellular corneal scaffold. Biomaterials 32: 6962–6971, 2011. doi:10.1016/j.biomaterials.2011.05.084.
    Crossref | PubMed | Web of Science | Google Scholar
  • 120. Xie L, Mao M, Zhou L, Jiang B. Spheroid mesenchymal stem cells and mesenchymal stem cell-derived microvesicles: two potential therapeutic strategies. Stem Cells Dev 25: 203–213, 2016. doi:10.1089/scd.2015.0278.
    Crossref | PubMed | Web of Science | Google Scholar
  • 121. Xu X, Wang W, Kratz K, Fang L, Li Z, Kurtz A, Ma N, Lendlein A. Controlling major cellular processes of human mesenchymal stem cells using microwell structures. Adv Healthc Mater 3: 1991–2003, 2014. doi:10.1002/adhm.201400415.
    Crossref | PubMed | Web of Science | Google Scholar
  • 122. Yang B, Yin Z, Cao J, Shi Z, Zhang Z, Song H, Liu F, Caterson B. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold. Biomed Mater 5: 045003, 2010. doi:10.1088/1748-6041/5/4/045003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 123. Yeatts AB, Choquette DT, Fisher JP. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta 1830: 2470–2480, 2013. doi:10.1016/j.bbagen.2012.06.007.
    Crossref | PubMed | Web of Science | Google Scholar
  • 124. Yin N, Stilwell MD, Santos TMA, Wang H, Weibel DB. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12: 129–138, 2015. doi:10.1016/j.actbio.2014.10.019.
    Crossref | PubMed | Web of Science | Google Scholar
  • 125. Yoshii Y, Waki A, Yoshida K, Kakezuka A, Kobayashi M, Namiki H, Kuroda Y, Kiyono Y, Yoshii H, Furukawa T, Asai T, Okazawa H, Gelovani JG, Fujibayashi Y. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials 32: 6052–6058, 2011. doi:10.1016/j.biomaterials.2011.04.076.
    Crossref | PubMed | Web of Science | Google Scholar
  • 126. Zanetti AS, Sabliov C, Gimble JM, Hayes DJ. Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater 101: 187–199, 2013. doi:10.1002/jbm.b.32817.
    Crossref | PubMed | Web of Science | Google Scholar
  • 127. Zhang W, Wray LS, Rnjak-Kovacina J, Xu L, Zou D, Wang S, Zhang M, Dong J, Li G, Kaplan DL, Jiang X. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration. Biomaterials 56: 68–77, 2015. doi:10.1016/j.biomaterials.2015.03.053.
    Crossref | PubMed | Web of Science | Google Scholar
  • 128. Zöller N, Valesky E, Butting M, Hofmann M, Kippenberger S, Bereiter-Hahn J, Bernd A, Kaufmann R. Clinical application of a tissue-cultured skin autograft: an alternative for the treatment of non-healing or slowly healing wounds? Dermatology 229: 190–198, 2014. doi:10.1159/000362927.
    Crossref | PubMed | Web of Science | Google Scholar
  • 129. Zuppinger C. 3D culture for cardiac cells. Biochim Biophys Acta 1863: 1873–1881, 2016. doi:10.1016/j.bbamcr.2015.11.036.
    Crossref | PubMed | Web of Science | Google Scholar