REFERENCES

  • 1 Amri K, Freund N, Vilar J, Merlet-Bénichou C, Lelièvre-Pégorier M. Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes 48: 2240–2245, 1999.
    Crossref | PubMed | Web of Science | Google Scholar
  • 2 Barker DJP, Osmond C, Golding J, Kuh D, Wadsworth MEJ. Growth in utero, blood pressure in childhood and adult life, and mortality from cardio-vascular disease. Br Med J 298: 564–567, 1989.
    Crossref | PubMed | Google Scholar
  • 3 Beltowski J, Jamroz-Wisniewska A, Borkowska E, Wojcicka G. Up-regulation of renal Na,K ATPase: the possible novel mechanism of leptin-induced hypertension. Pol J Pharmacol 56: 213–222, 2004.
    Crossref | PubMed | Google Scholar
  • 4 Boubred F, Vendemia M, Garcia-Meric P, Buffat C, Millet V, Simeoni U. Effects of maternally administered drugs on the fetal and neonatal kidney. Drug Saf 29: 397–419, 2006.
    Crossref | PubMed | Web of Science | Google Scholar
  • 5 Boullu-Ciocca S, Dutour A, Guillaume V, Achard V, Oliver C, Grino M. Postnatal diet-induced obesity in rat upregulates systemic and adipose tissue glucocorticoid metabolism during development and in adulthood: its relationship with the metabolic syndrome. Diabetes 54: 197–203, 2005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 6 Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1: 335–347, 1988.
    Crossref | PubMed | Web of Science | Google Scholar
  • 7 Burrow CR. Regulatory molecules in kidney development. Pediatr Nephrol 14: 240–53, 2000.
    Crossref | PubMed | Web of Science | Google Scholar
  • 8 De Curtis M, Rogo J. Extrauterine growth restriction in very low birth weight infants. Acta Paediatr 93: 1563–1568, 2004.
    Crossref | PubMed | Web of Science | Google Scholar
  • 9 Doyle LW, Faber B, Callanan C, Morley R. Blood pressure in late adolescence and very low birth weight. Pediatrics 111: 252–257, 2003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 10 Dusick AM, Poindexter BB, Ehrenkranz RA, Lemons JA. Growth failure in the preterm infant: can we catch up? Semin Perinatol 27: 302–310, 2003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 11 Haynes WG. Role of leptin in obesity-related hypertension. Exp Physiol 90: 683–688, 2005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 12 Hoy WE, Hughson MD, Bertram JF, Douglas-Denton R, Amann K. Nephron number, hypertension, renal disease, and renal failure. J Am Soc Nephrol 16: 2557–2564, 2005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 13 Hoy WE, Hughson MD, Singh GR, Douglas-Denton R, Bertram JF. Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int 70: 104–110, 2006.
    Crossref | PubMed | Web of Science | Google Scholar
  • 14 Johansson S, Iliadou A, Bergvall N, Tuvemo T, Norman M, Cnattingius S. Risk of high blood pressure among young men increases with the degree of immaturity at birth. Circulation 112: 3430–3436, 2005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 15 Keijzer-Veen MG, Finken MJ, Nauta J, Dekker FW, Hille ET, Frolich M, Wit JM, van der Heijden AJ; Dutch POPS19 Collaborative Study Group. Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in The Netherlands. Pediatrics 116: 725–731, 2005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 16 Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med 348: 101–108, 2003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 17 Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, Merlet-Benichou C. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int 54: 1455–1462, 1998.
    Crossref | PubMed | Web of Science | Google Scholar
  • 18 Merlet-Benichou C, Gilbert T, Muffat-Joly M, Lelievre-Pegorier M, Leroy B. Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr Nephrol 8: 175–180, 1994.
    Crossref | PubMed | Web of Science | Google Scholar
  • 19 Merlet-Benichou C, Gilbert T, Vilar J, Moreau E, Freund N, Lelievre-Pegorier M. Nephron number: variability is the rule. Causes and consequences. Lab Invest 79: 515–527, 1999.
    PubMed | Web of Science | Google Scholar
  • 20 Montarro MS, Allen AM, Oldfield BJ. Structural and functional evidence supporting a role for leptin in central neural pathway influencing blood pressure in rats. Exp Physiol 90: 683–688, 2005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 21 Ortiz LA, Ouan A, Zarzar F, Weinberg A, Baum M. Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension 41: 328–334, 2003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 22 Plagemann A, Harder T, Rake A, Voits M, Fink H, Rohde W, Dorner G. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome X-like alterations in adulthood of neonatally overfed rats. Brain Res 836: 146–155, 1999.
    Crossref | PubMed | Web of Science | Google Scholar
  • 23 Plagemann A, Heidrich I, Gotz F, Rohde W, Dorner G. Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp Clin Endocrinol 99: 154–158, 1992.
    Crossref | PubMed | Google Scholar
  • 24 Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7: 17–25, 2004.
    Crossref | PubMed | Web of Science | Google Scholar
  • 25 Schreuder MF, Nyengaard JR, Remmers F, van Wijk JA, Delemarre-van de Waal HA. Postnatal food restriction in the rat as a model for a low nephron endowment. Am J Physiol Renal Physiol 291: F1104–F1107, 2006.
    Link | Web of Science | Google Scholar
  • 26 Shinozaki K, Kashiwagi A, Masada M, Okamura T. Molecular mechanisms of impaired endothelial function associated with insulin resistance. Curr Drug Targets Cardiovasc Haemat Dis 4: 1–11, 2004.
    Crossref | PubMed | Google Scholar
  • 27 Simeoni U, Zetterstrom R. Long-term circulatory and renal consequences of intrauterine growth restriction. Acta Paediatr 94: 819–824, 2005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 28 Singhal A, Cole TJ, Fewtrell M, Deanfield J, Lucas A. Is slower early growth beneficial for long-term cardiovascular health? Circulation 109: 1108–1113, 2004.
    Crossref | PubMed | Web of Science | Google Scholar
  • 29 Veldowska E, Cole JJ, Morris MJ. Early dietary intervention: long-term effects on blood pressure, brain neuropeptide Y, and adiposity markers. Am J Physiol Endocrinol Metab 288: E1236–E1243, 2005.
    Link | Web of Science | Google Scholar
  • 30 Weibel ER. Stereological methods. In: Practical Methods for Biological Morphometry. London: Academic, 1979, p. 51–57.
    Google Scholar
  • 31 Woods LL. Neonatal uninephrectomy causes hypertension in adult rats. Am J Physiol Regul Integr Comp Physiol 276: R974–R978, 1999.
    Link | Web of Science | Google Scholar
  • 32 Woods LL, Rasch R. Perinatal ANG II programs adult blood pressure, glomerular number, and renal function in rats. Am J Physiol Regul Integr Comp Physiol 275: R1593–R1599, 1998.
    Link | Web of Science | Google Scholar
  • 33 Yamamoto Y, Maeshima Y, Kitayama H, Kitamura S, Takazawa Y, Sugiyama H, Yamasaki Y, Makino H. Tumstatin peptide, an inhibitor for angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 53: 1831–1840, 2004.
    Crossref | PubMed | Web of Science | Google Scholar
  • 34 You S, Gotz F, Rohde W, Dorner G. Early postnatal overfeeding and diabetes suceptibility. Exp Clin Endocrinol 96: 301–306, 1990.
    PubMed | Google Scholar