Research ArticleHigher Neural Functions and Behavior

Distributed representations of temporal stimulus associations across regular-firing and fast-spiking neurons in rat medial prefrontal cortex

Published Online:https://doi.org/10.1152/jn.00565.2019

The prefrontal cortex has been implicated in various cognitive processes, including working memory, executive control, decision making, and relational learning. One core computational requirement underlying all these processes is the integration of information across time. When rodents and rabbits associate two temporally discontiguous stimuli, some neurons in the medial prefrontal cortex (mPFC) change firing rates in response to the preceding stimulus and sustain the firing rate during the subsequent temporal interval. These firing patterns are thought to serve as a mechanism to buffer the previously presented stimuli and signal the upcoming stimuli; however, how these critical properties are distributed across different neuron types remains unknown. We investigated the firing selectivity of regular-firing, burst-firing, and fast-spiking neurons in the prelimbic region of the mPFC while rats associated two neutral conditioned stimuli (CS) with one aversive stimulus (US). Analyses of firing patterns of individual neurons and neuron ensembles revealed that regular-firing neurons maintained rich information about CS identity and CS-US contingency during intervals separating the CS and US. Moreover, they further strengthened the latter selectivity with repeated conditioning sessions over a month. The selectivity of burst-firing neurons for both stimulus features was weaker than that of regular-firing neurons, indicating the difference in task engagement between two subpopulations of putative excitatory neurons. In contrast, putative inhibitory, fast-spiking neurons showed a stronger selectivity for CS identity than for CS-US contingency, suggesting their potential role in sensory discrimination. These results reveal a fine-scaled functional organization in the prefrontal network supporting the formation of temporal stimulus associations.

NEW & NOTEWORTHY To associate stimuli that occurred separately in time, the brain needs to bridge the temporal gap by maintaining what was presented and predicting what would follow. We show that in rat medial prefrontal cortex, the former function is associated with a subpopulation of putative inhibitory neurons, whereas the latter is supported by a subpopulation of putative excitatory neurons. Our results reveal a distinct contribution of these microcircuit components to neural representations of temporal stimulus associations.

REFERENCES

  • Baeg EH, Kim YB, Jang J, Kim HT, Mook-Jung I, Jung MW. Fast spiking and regular spiking neural correlates of fear conditioning in the medial prefrontal cortex of the rat. Cereb Cortex 11: 441–451, 2001. doi:10.1093/cercor/11.5.441.
    CrossrefPubMedISIGoogle Scholar
  • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2: 27, 2011. doi:10.1145/1961189.1961199.
    CrossrefISIGoogle Scholar
  • Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13: 99–104, 1990. doi:10.1016/0166-2236(90)90185-D.
    CrossrefPubMedISIGoogle Scholar
  • Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, Abdi A, Baufreton J, Bienvenu TC, Herry C. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505: 92–96, 2014. doi:10.1038/nature12755.
    CrossrefPubMedISIGoogle Scholar
  • Dembrow N, Johnston D. Subcircuit-specific neuromodulation in the prefrontal cortex. Front Neural Circuits 8: 54, 2014. doi:10.3389/fncir.2014.00054.
    CrossrefPubMedISIGoogle Scholar
  • Dembrow NC, Chitwood RA, Johnston D. Projection-specific neuromodulation of medial prefrontal cortex neurons. J Neurosci 30: 16922–16937, 2010. doi:10.1523/JNEUROSCI.3644-10.2010.
    CrossrefPubMedISIGoogle Scholar
  • Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci 6: 119–130, 2005. doi:10.1038/nrn1607.
    CrossrefPubMedISIGoogle Scholar
  • Gilmartin MR, McEchron MD. Single neurons in the medial prefrontal cortex of the rat exhibit tonic and phasic coding during trace fear conditioning. Behav Neurosci 119: 1496–1510, 2005. doi:10.1037/0735-7044.119.6.1496.
    CrossrefPubMedISIGoogle Scholar
  • Gilmartin MR, Miyawaki H, Helmstetter FJ, Diba K. Prefrontal activity links nonoverlapping events in memory. J Neurosci 33: 10910–10914, 2013. doi:10.1523/JNEUROSCI.0144-13.2013.
    CrossrefPubMedISIGoogle Scholar
  • Gu BM, van Rijn H, Meck WH. Oscillatory multiplexing of neural population codes for interval timing and working memory. Neurosci Biobehav Rev 48: 160–185, 2015. doi:10.1016/j.neubiorev.2014.10.008.
    CrossrefPubMedISIGoogle Scholar
  • Hattori S, Yoon T, Disterhoft JF, Weiss C. Functional reorganization of a prefrontal cortical network mediating consolidation of trace eyeblink conditioning. J Neurosci 34: 1432–1445, 2014. doi:10.1523/JNEUROSCI.4428-13.2014.
    CrossrefPubMedISIGoogle Scholar
  • Hirai Y, Morishima M, Karube F, Kawaguchi Y. Specialized cortical subnetworks differentially connect frontal cortex to parahippocampal areas. J Neurosci 32: 1898–1913, 2012. doi:10.1523/JNEUROSCI.2810-11.2012.
    CrossrefPubMedISIGoogle Scholar
  • Honig W, Thompson RK. Retrospective and prospective processing in animal working memory. In: The Psychology of Learning and Motivation: Advances in Research and Theory, edited by Bower GH. New York: Academic, 1982, vol. 16, p. 239–283.
    Google Scholar
  • Insel N, Barnes CA. Differential activation of fast-spiking and regular-firing neuron populations during movement and reward in the dorsal medial frontal cortex. Cereb Cortex 25: 2631–2647, 2015. doi:10.1093/cercor/bhu062.
    CrossrefPubMedISIGoogle Scholar
  • Insel N, Takehara-Nishiuchi K. The cortical structure of consolidated memory: a hypothesis on the role of the cingulate-entorhinal cortical connection. Neurobiol Learn Mem 106: 343–350, 2013. doi:10.1016/j.nlm.2013.07.019.
    CrossrefPubMedISIGoogle Scholar
  • Jarovi J, Volle J, Yu X, Guan L, Takehara-Nishiuchi K. Prefrontal theta oscillations promote selective encoding of behaviorally relevant events. eNeuro 5: ENEURO.0407-18.2018, 2018. doi:10.1523/ENEURO.0407-18.2018.
    CrossrefPubMedISIGoogle Scholar
  • Jung MW, Qin Y, McNaughton BL, Barnes CA. Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb Cortex 8: 437–450, 1998. doi:10.1093/cercor/8.5.437.
    CrossrefPubMedISIGoogle Scholar
  • Kamigaki T, Dan Y. Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior. Nat Neurosci 20: 854–863, 2017. doi:10.1038/nn.4554.
    CrossrefPubMedISIGoogle Scholar
  • Kawaguchi Y, Kubota Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7: 476–486, 1997. doi:10.1093/cercor/7.6.476.
    CrossrefPubMedISIGoogle Scholar
  • Kepecs A, Fishell G. Interneuron cell types are fit to function. Nature 505: 318–326, 2014. doi:10.1038/nature12983.
    CrossrefPubMedISIGoogle Scholar
  • Kloosterman F, Davidson TJ, Gomperts SN, Layton SP, Hale G, Nguyen DP, Wilson MA. Micro-drive array for chronic in vivo recording: drive fabrication. J Vis Exp 1094, 2009. doi:10.3791/1094.
    CrossrefPubMedGoogle Scholar
  • Molnár Z, Cheung AF. Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55: 105–115, 2006. doi:10.1016/j.neures.2006.02.008.
    CrossrefPubMedISIGoogle Scholar
  • Morrissey MD, Insel N, Takehara-Nishiuchi K. Generalizable knowledge outweighs incidental details in prefrontal ensemble code over time. eLife 6: e22177, 2017. doi:10.7554/eLife.22177.
    CrossrefPubMedISIGoogle Scholar
  • Morrissey MD, Maal-Bared G, Brady S, Takehara-Nishiuchi K. Functional dissociation within the entorhinal cortex for memory retrieval of an association between temporally discontiguous stimuli. J Neurosci 32: 5356–5361, 2012. doi:10.1523/JNEUROSCI.5227-11.2012.
    CrossrefPubMedISIGoogle Scholar
  • Oswald BB, Maddox SA, Tisdale N, Powell DA. Encoding and retrieval are differentially processed by the anterior cingulate and prelimbic cortices: a study based on trace eyeblink conditioning in the rabbit. Neurobiol Learn Mem 93: 37–45, 2010. doi:10.1016/j.nlm.2009.08.001.
    CrossrefPubMedISIGoogle Scholar
  • Pilkiw M, Takehara-Nishiuchi K. Neural representations of time-linked memory. Neurobiol Learn Mem 153: 57–70, 2018. doi:10.1016/j.nlm.2018.03.024.
    CrossrefPubMedISIGoogle Scholar
  • Pinto L, Dan Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87: 437–450, 2015. doi:10.1016/j.neuron.2015.06.021.
    CrossrefPubMedISIGoogle Scholar
  • Rao SG, Williams GV, Goldman-Rakic PS. Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81: 1903–1916, 1999. doi:10.1152/jn.1999.81.4.1903.
    LinkISIGoogle Scholar
  • Siegel JJ, Kalmbach B, Chitwood RA, Mauk MD. Persistent activity in a cortical-to-subcortical circuit: bridging the temporal gap in trace eyelid conditioning. J Neurophysiol 107: 50–64, 2012. doi:10.1152/jn.00689.2011.
    LinkISIGoogle Scholar
  • Siegel JJ, Mauk MD. Persistent activity in prefrontal cortex during trace eyelid conditioning: dissociating responses that reflect cerebellar output from those that do not. J Neurosci 33: 15272–15284, 2013. doi:10.1523/JNEUROSCI.1238-13.2013.
    CrossrefPubMedISIGoogle Scholar
  • Simon B, Knuckley B, Churchwell J, Powell DA. Post-training lesions of the medial prefrontal cortex interfere with subsequent performance of trace eyeblink conditioning. J Neurosci 25: 10740–10746, 2005. doi:10.1523/JNEUROSCI.3003-05.2005.
    CrossrefPubMedISIGoogle Scholar
  • Song YH, Kim JH, Jeong HW, Choi I, Jeong D, Kim K, Lee SH. A neural circuit for auditory dominance over visual perception. Neuron 93: 940–954.e6, 2017. [Erratum in Neuron 93: 1236–1237, 2017.] doi:10.1016/j.neuron.2017.01.006.
    CrossrefPubMedISIGoogle Scholar
  • Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9: 206–221, 2008. doi:10.1038/nrn2286.
    CrossrefPubMedISIGoogle Scholar
  • Takehara K, Kawahara S, Kirino Y. Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning. J Neurosci 23: 9897–9905, 2003. doi:10.1523/JNEUROSCI.23-30-09897.2003.
    CrossrefPubMedISIGoogle Scholar
  • Takehara-Nishiuchi K. The anatomy and physiology of eyeblink classical conditioning. Curr Top Behav Neurosci 37: 297–323, 2018. doi:10.1007/7854_2016_455.
    CrossrefPubMedGoogle Scholar
  • Takehara-Nishiuchi K, McNaughton BL. Spontaneous changes of neocortical code for associative memory during consolidation. Science 322: 960–963, 2008. doi:10.1126/science.1161299.
    CrossrefPubMedISIGoogle Scholar
  • Takehara-Nishiuchi K, Nakao K, Kawahara S, Matsuki N, Kirino Y. Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning. J Neurosci 26: 5049–5058, 2006. doi:10.1523/JNEUROSCI.4381-05.2006.
    CrossrefPubMedISIGoogle Scholar
  • Volle J, Yu X, Sun H, Tanninen SE, Insel N, Takehara-Nishiuchi K. Enhancing prefrontal neuron activity enables associative learning of temporally disparate events. Cell Reports 15: 2400–2410, 2016. doi:10.1016/j.celrep.2016.05.021.
    CrossrefPubMedISIGoogle Scholar
  • Wilson FA, O’Scalaidhe SP, Goldman-Rakic PS. Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. Proc Natl Acad Sci USA 91: 4009–4013, 1994. doi:10.1073/pnas.91.9.4009.
    CrossrefPubMedISIGoogle Scholar
  • Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space. Science 261: 1055–1058, 1993. doi:10.1126/science.8351520.
    CrossrefPubMedISIGoogle Scholar
  • Wiltgen BJ, Brown RA, Talton LE, Silva AJ. New circuits for old memories: the role of the neocortex in consolidation. Neuron 44: 101–108, 2004. doi:10.1016/j.neuron.2004.09.015.
    CrossrefPubMedISIGoogle Scholar
  • Woodruff-Pak DS, Disterhoft JF. Where is the trace in trace conditioning? Trends Neurosci 31: 105–112, 2008. doi:10.1016/j.tins.2007.11.006.
    CrossrefPubMedISIGoogle Scholar
  • Yang CR, Seamans JK, Gorelova N. Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. J Neurosci 16: 1904–1921, 1996. doi:10.1523/JNEUROSCI.16-05-01904.1996.
    CrossrefPubMedISIGoogle Scholar
  • Zentall TR. Coding of stimuli by animals: retrospection, prospection, episodic memory and future planning. Learn Motiv 41: 225–240, 2010. doi:10.1016/j.lmot.2010.08.001.
    CrossrefPubMedISIGoogle Scholar