Rapid ReportControl of Movement

Sensory prediction error drives subconscious motor learning outside of the laboratory

Published Online:https://doi.org/10.1152/jn.00110.2023

Sensorimotor adaptation is supported by at least two parallel learning systems: an intentionally controlled explicit strategy and an involuntary implicit learning system. Past work focused on constrained reaches or finger movements in laboratory environments has shown subconscious learning systems to be driven in part by sensory prediction error (SPE), i.e., the mismatch between the realized and expected outcome of an action. We designed a ball rolling task to explore whether SPEs can drive implicit motor adaptation during complex whole body movements that impart physical motion on external objects. After applying a visual shift, participants rapidly adapted their rolling angles to reduce the error between the ball and the target. We removed all visual feedback and told participants to aim their throw directly toward the primary target, revealing an unintentional 5.06° implicit adjustment to reach angles that decayed over time. To determine whether this implicit adaptation was driven by SPE, we gave participants a second aiming target that would “solve” the visual shift, as in the study by Mazzoni and Krakauer (Mazzoni P, Krakauer JW. J Neurosci 26: 3642–3645, 2006). Remarkably, after rapidly reducing ball-rolling error to zero (due to enhancements in strategic aiming), the additional aiming target caused rolling angles to deviate beyond the primary target by 3.15°. This involuntary overcompensation, which worsened task performance, is a hallmark of SPE-driven implicit learning. These results show that SPE-driven implicit processes, previously observed within simplified finger or planar reaching movements, actively contribute to motor adaptation in more complex naturalistic skill-based tasks.

NEW & NOTEWORTHY Implicit and explicit learning systems have been detected using simple, constrained movements inside the laboratory. How these systems impact movements during complex whole body, skill-based tasks has not been established. Here, we demonstrate that sensory prediction errors significantly impact how a person updates their movements, replicating findings from the laboratory in an unconstrained ball-rolling task. This real-world validation is an important step toward explaining how subconscious learning helps humans execute common motor skills in dynamic environments.

REFERENCES

  • 1. Tsay JS, Haith AM, Ivry RB, Kim HE. Interactions between sensory prediction error and task error during implicit motor learning. PLoS Comput Biol 18: e1010005, 2022. doi:10.1371/journal.pcbi.1010005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 2. Mazzoni P, Krakauer JW. An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26: 3642–3645, 2006. doi:10.1523/JNEUROSCI.5317-05.2006.
    Crossref | PubMed | Web of Science | Google Scholar
  • 3. Albert ST, Jang J, Modchalingam S, 't Hart BM, Henriques D, Lerner G, Della-Maggiore V, Haith AM, Krakauer JW, Shadmehr R. Competition between parallel sensorimotor learning systems. eLife 11: e65361, 2022. doi:10.7554/eLife.65361.
    Crossref | PubMed | Web of Science | Google Scholar
  • 4. Wong AL, Shelhamer M. Using prediction errors to drive saccade adaptation: the implicit double-step task. Exp Brain Res 222: 55–64, 2012. doi:10.1007/s00221-012-3195-4.
    Crossref | PubMed | Web of Science | Google Scholar
  • 5. Tseng Y, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98: 54–62, 2007. doi:10.1152/jn.00266.2007.
    Link | Web of Science | Google Scholar
  • 6. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33: 89–108, 2010. doi:10.1146/annurev-neuro-060909-153135.
    Crossref | PubMed | Web of Science | Google Scholar
  • 7. Taylor JA, Ivry RB. Flexible cognitive strategies during motor learning. PLoS Comput Biol 7: e1001096, 2011. doi:10.1371/journal.pcbi.1001096.
    Crossref | PubMed | Web of Science | Google Scholar
  • 8. Albert ST, Jang J, Sheahan HR, Teunissen L, Vandevoorde K, Herzfeld DJ, Shadmehr R. An implicit memory of errors limits human sensorimotor adaptation. Nat Hum Behav 5: 920–934, 2021. doi:10.1038/s41562-020-01036-x.
    Crossref | PubMed | Web of Science | Google Scholar
  • 9. Herzfeld DJ, Vaswani PA, Marko MK, Shadmehr R. A memory of errors in sensorimotor learning. Science 345: 1349–1353, 2014. doi:10.1126/science.1253138.
    Crossref | PubMed | Web of Science | Google Scholar
  • 10. Miyamoto YR, Wang S, Smith MA. Implicit adaptation compensates for erratic explicit strategy in human motor learning. Nat Neurosci 23: 443–455, 2020. doi:10.1038/s41593-020-0600-3.
    Crossref | PubMed | Web of Science | Google Scholar
  • 11. Albert ST, Hadjiosif AM, Jang J, Zimnik AJ, Soteropoulos DS, Baker SN, Churchland MM, Krakauer JW, Shadmehr R. Postural control of arm and fingers through integration of movement commands. eLife 9: e52507, 2020. doi:10.7554/eLife.52507.
    Crossref | PubMed | Web of Science | Google Scholar
  • 12. Haar S, van Assel CM, Faisal AA. Motor learning in real-world pool billiards. Sci Rep 10: 20046, 2020. doi:10.1038/s41598-020-76805-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 13. van der Kamp J, Steenbergen B, Masters RSW. Explicit and implicit motor learning in children with unilateral cerebral palsy. Disabil Rehabil 40: 2790–2797, 2018. doi:10.1080/09638288.2017.1360403.
    Crossref | PubMed | Web of Science | Google Scholar
  • 14. Leukel C, Gollhofer A, Taube W. In Experts, underlying processes that drive visuomotor adaptation are different than in Novices. Front Hum Neurosci 9: 50, 2015. doi:10.3389/fnhum.2015.00050.
    Crossref | PubMed | Web of Science | Google Scholar
  • 15. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119: 1183–1198, 1996. doi:10.1093/brain/119.4.1183.
    Crossref | PubMed | Web of Science | Google Scholar
  • 16. Leow L-A, Marinovic W, de Rugy A, Carroll TJ. Task errors contribute to implicit aftereffects in sensorimotor adaptation. Eur J Neurosci 48: 3397–3409, 2018. doi:10.1111/ejn.14213.
    Crossref | PubMed | Web of Science | Google Scholar
  • 17. Blustein D, Shehata A, Englehart K, Sensinger J. Conventional analysis of trial-by-trial adaptation is biased: empirical and theoretical support using a Bayesian estimator. PLoS Comput Biol 14: e1006501, 2018. doi:10.1371/journal.pcbi.1006501.
    Crossref | PubMed | Web of Science | Google Scholar
  • 18. Campbell R. sigstar. GitHub. 2023. https://github.com/raacampbell/sigstar [2023 Feb 21].
    Google Scholar
  • 19. Fachada N, Rosa A. micompm: a MATLAB/Octave toolbox for multivariate independent comparison of observations. J Open Source Softw 3: 430, 2018. doi:10.21105/joss.00430.
    Crossref | Google Scholar
  • 20. Ruttle JE, 't Hart BM, Henriques DYP. Implicit motor learning within three trials. Sci Rep 11: 1627, 2021. doi:10.1038/s41598-021-81031-y.
    Crossref | PubMed | Web of Science | Google Scholar
  • 21. Brudner SN, Kethidi N, Graeupner D, Ivry RB, Taylor JA. Delayed feedback during sensorimotor learning selectively disrupts adaptation but not strategy use. J Neurophysiol 115: 1499–1511, 2016. doi:10.1152/jn.00066.2015.
    Link | Web of Science | Google Scholar
  • 22. Schween R, Hegele M. Feedback delay attenuates implicit but facilitates explicit adjustments to a visuomotor rotation. Neurobiol Learn Mem 140: 124–133, 2017. doi:10.1016/j.nlm.2017.02.015.
    Crossref | PubMed | Web of Science | Google Scholar
  • 23. Maresch J, Werner S, Donchin O. Methods matter: your measures of explicit and implicit processes in visuomotor adaptation affect your results. Eur J Neurosci 53: 504–518, 2021. doi:10.1111/ejn.14945.
    Crossref | PubMed | Web of Science | Google Scholar
  • 24. Vaswani PA, Shmuelof L, Haith AM, Delnicki RJ, Huang VS, Mazzoni P, Shadmehr R, Krakauer JW. Persistent residual errors in motor adaptation tasks: reversion to baseline and exploratory escape. J Neurosci 35: 6969–6977, 2015. doi:10.1523/JNEUROSCI.2656-14.2015.
    Crossref | PubMed | Web of Science | Google Scholar
  • 25. Taylor JA, Krakauer JW, Ivry RB. Explicit and implicit contributions to learning in a sensorimotor adaptation task. J Neurosci 34: 3023–3032, 2014. doi:10.1523/JNEUROSCI.3619-13.2014.
    Crossref | PubMed | Web of Science | Google Scholar
  • 26. McDougle SD, Bond KM, Taylor JA. Explicit and implicit processes constitute the fast and slow processes of sensorimotor learning. J Neurosci 35: 9568–9579, 2015. doi:10.1523/JNEUROSCI.5061-14.2015.
    Crossref | PubMed | Web of Science | Google Scholar
  • 27. Huang VS, Haith A, Mazzoni P, Krakauer JW. Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron 70: 787–801, 2011. doi:10.1016/j.neuron.2011.04.012.
    Crossref | PubMed | Web of Science | Google Scholar
  • 28. Hadjiosif AM, Krakauer JW. The explicit/implicit distinction in studies of visuomotor learning: conceptual and methodological pitfalls. Eur J Neurosci 53: 499–503, 2021. doi:10.1111/ejn.14984.
    Crossref | PubMed | Web of Science | Google Scholar
  • 29. Leow L-A, Marinovic W, de Rugy A, Carroll TJ. Task errors drive memories that improve sensorimotor adaptation. J Neurosci 40: 3075–3088, 2020. doi:10.1523/JNEUROSCI.1506-19.2020.
    Crossref | PubMed | Web of Science | Google Scholar
  • 30. Morehead JR, de Xivry J-JO. A synthesis of the many errors and learning processes of visuomotor adaptation (Preprint). bioRxiv, 2021. https://doi.org/10.1101/2021.03.14.435278.
    Google Scholar
  • 31. Huberdeau DM, Krakauer JW, Haith AM. Practice induces a qualitative change in the memory representation for visuomotor learning. J Neurophysiol 122: 1050–1059, 2019. doi:10.1152/jn.00830.2018.
    Link | Web of Science | Google Scholar
  • 32. Haith AM, Huberdeau DM, Krakauer JW. The influence of movement preparation time on the expression of visuomotor learning and savings. J Neurosci 35: 5109–5117, 2015. doi:10.1523/JNEUROSCI.3869-14.2015.
    Crossref | PubMed | Web of Science | Google Scholar
  • 33. Morehead JR, Qasim SE, Crossley MJ, Ivry R. Savings upon re-aiming in visuomotor adaptation. J Neurosci 35: 14386–14396, 2015. doi:10.1523/JNEUROSCI.1046-15.2015.
    Crossref | PubMed | Web of Science | Google Scholar
  • 34. Diedrichsen J, White O, Newman D, Lally N. Use-dependent and error-based learning of motor behaviors. J Neurosci 30: 5159–5166, 2010. doi:10.1523/JNEUROSCI.5406-09.2010.
    Crossref | PubMed | Web of Science | Google Scholar
  • 35. Kim HE, Morehead JR, Parvin DE, Moazzezi R, Ivry RB. Invariant errors reveal limitations in motor correction rather than constraints on error sensitivity. Commun Biol 1: 19, 2018. doi:10.1038/s42003-018-0021-y.
    Crossref | PubMed | Web of Science | Google Scholar
  • 36. Tsay JS, Kim H, Haith AM, Ivry RB. Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment. eLife 11: e76639, 2022. doi:10.7554/eLife.76639.
    Crossref | PubMed | Web of Science | Google Scholar
  • 37. Neville K-M, Cressman EK. The influence of awareness on explicit and implicit contributions to visuomotor adaptation over time. Exp Brain Res 236: 2047–2059, 2018. doi:10.1007/s00221-018-5282-7.
    Crossref | PubMed | Web of Science | Google Scholar
  • 38. Hadjiosif AM, Smith MA. Flexible control of safety margins for action based on environmental variability. J Neurosci 35: 9106–9121, 2015. doi:10.1523/JNEUROSCI.1883-14.2015.
    Crossref | PubMed | Web of Science | Google Scholar
  • 39. Orozco SP, Albert ST, Shadmehr R. Adaptive control of movement deceleration during saccades. PLoS Comput Biol 17: e1009176, 2021. doi:10.1371/journal.pcbi.1009176.
    Crossref | PubMed | Web of Science | Google Scholar
  • 40. Hadjiosif AM, Morehead JR, Smith MA. A double dissociation between savings and long-term memory in motor learning. PLoS Biol 21: e3001799, 2023. doi:10.1371/journal.pbio.3001799.
    Crossref | PubMed | Web of Science | Google Scholar
  • 41. Alhussein L, Hosseini EA, Nguyen KP, Smith MA, Joiner WM. Dissociating effects of error size, training duration, and amount of adaptation on the ability to retain motor memories. J Neurophysiol 122: 2027–2042, 2019. doi:10.1152/jn.00387.2018.
    Link | Web of Science | Google Scholar
  • 42. Ekerot C-F, Kano M. Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neurosci Res 6: 264–268, 1989. doi:10.1016/0168-0102(89)90065-5.
    Crossref | PubMed | Web of Science | Google Scholar
  • 43. Suvrathan A, Payne HL, Raymond JL. Timing rules for synaptic plasticity matched to behavioral function. Neuron 92: 959–967, 2016. doi:10.1016/j.neuron.2016.10.022.
    Crossref | PubMed | Web of Science | Google Scholar
  • 44. Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. Nat Neurosci 21: 736–743, 2018. doi:10.1038/s41593-018-0136-y.
    Crossref | PubMed | Web of Science | Google Scholar
  • 45. Kim HE, Parvin DE, Ivry RB. The influence of task outcome on implicit motor learning. eLife 8: e39882, 2019. doi:10.7554/eLife.39882.
    Crossref | PubMed | Web of Science | Google Scholar
  • 46. Tsay JS, Asmerian H, Germine LT, Wilmer J, Ivry RB, Nakayama K. Predictors of sensorimotor adaption: insights from over 100,000 reaches (Preprint). bioRxiv, 2023. doi:10.1101/2023.01.18.524634.
    Google Scholar
  • 47. McDougle SD, Taylor JA. Dissociable cognitive strategies for sensorimotor learning. Nat Commun 10: 40, 2019. doi:10.1038/s41467-018-07941-0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 48. Fernandez-Ruiz J, Wong W, Armstrong IT, Flanagan JR. Relation between reaction time and reach errors during visuomotor adaptation. Behav Brain Res 219: 8–14, 2011. doi:10.1016/j.bbr.2010.11.060.
    Crossref | PubMed | Web of Science | Google Scholar