Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans

We compared the effects of isocapnic hypoxia (IHO) and hyperoxic hypercapnia (HC) on sympathetic nerve activity (SNA) recorded from a peroneal nerve in 13 normal subjects. HC caused greater increases in blood pressure (BP), minute ventilation (VE), and SNA [53 +/- 14% (SE) during HC vs. 21 +/- 7% during IHO; P less than 0.05]. Even at equivalent levels of VE, HC still elicited greater SNA than IHO. However, apnea during HC caused a lesser (P less than 0.05) increase in SNA (91 +/- 26% compared with apnea on room air) than apnea during IHO (173 +/- 50%). Hypercapnic hypoxia resulted in a greater absolute increase in VE (23.6 +/- 2.8 l/min) than the additive increases due to HC alone plus IHO alone (18.0 +/- 1.8 l/min, P less than 0.05). SNA also increased synergistically by 108 +/- 23% with the combined stimulus compared with the additive effect of HC alone plus IHO alone (68 +/- 19%; P less than 0.05). We conclude that 1) HC causes greater increases in VE and SNA than does hypoxia; 2) for the same increase in VE, hypercapnia still causes a greater increase in SNA than hypoxia; however, during apnea, hypoxia causes a much greater increase in SNA than hypercapnia; 3) the inhibitory influence of ventilation on SNA is greater during hypoxia (i.e., predominantly peripheral chemoreceptor stimulation) than hypercapnia (i.e., predominantly central chemoreceptor stimulation); and 4) combined hypoxia and hypercapnia have a synergistic effect on SNA as well as on VE.