Research Article

Maternal malnutrition in mice impairs nephrogenesis by disrupting DNA methylation of regulatory regions

Maternal caloric restriction during pregnancy significantly impacts kidney development, influencing susceptibility to chronic kidney disease in adulthood. This study explores DNA methylation changes in nephron progenitor cells resulting from caloric restriction and their implications for kidney health. Global DNA hypomethylation is observed in nephron progenitors from caloric-restricted embryos, with specific genomic regions displaying distinct methylation patterns, including hypomethylation and hypermethylation. Differentially methylated regions exhibit enhanced chromatin accessibility, indicating biological relevance. Hypomethylated regions are enriched for genes associated with developmental processes, reflecting changes in gene expression and highlighting their functional relevance in kidney development. The study also reveals that supplementing methionine, an essential amino acid, restores disrupted DNA methylation patterns, particularly in enhancer regions, emphasizing methionine’s critical role in regulating nephron progenitor cell epigenetics and ensuring proper kidney development. The intricate relationship between maternal nutrition, dynamic DNA methylation, and kidney development is highlighted, emphasizing the enduring impact of early-life nutritional challenges on kidney function. This research elucidates epigenetic mechanisms as mediators for the lasting effects of maternal caloric restriction on kidney health. The study contributes valuable insights into the origins of chronic kidney diseases during early developmental stages, offering potential interventions to mitigate adverse outcomes.

NEW & NOTEWORTHY Our study establishes a direct link between maternal caloric restriction, DNA methylation patterns in nephron progenitor cells, and kidney development. We reveal consistent alterations in methylation patterns, coupled with corresponding shifts in the expression of genes related to kidney development and cell proliferation. Methionine supplementation emerges as a promising intervention, effectively restoring disrupted DNA methylation patterns. These findings pave the way for potential therapeutics, optimizing kidney development and mitigating the burden of chronic kidney disease in adulthood.

REFERENCES

  • 1. Nishinakamura R, Uchiyama Y, Sakaguchi M, Fujimura S. Nephron progenitors in the metanephric mesenchyme. Pediatr Nephrol 26: 1463–1467, 2011. doi:10.1007/s00467-011-1806-0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 2. Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18: 698–712, 2010. doi:10.1016/j.devcel.2010.04.008.
    Crossref | PubMed | Web of Science | Google Scholar
  • 3. Jarmas AE, Brunskill EW, Chaturvedi P, Salomonis N, Kopan R. Progenitor translatome changes coordinated by Tsc1 increase perception of Wnt signals to end nephrogenesis. Nat Commun 12: 6332, 2021. doi:10.1038/s41467-021-26626-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 4. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE. Human nephron number: implications for health and disease. Pediatr Nephrol 26: 1529–1533, 2011. doi:10.1007/s00467-011-1843-8.
    Crossref | PubMed | Web of Science | Google Scholar
  • 5. Perl AJ, Schuh MP, Kopan R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 18: 683–695, 2022. doi:10.1038/s41581-022-00620-w.
    Crossref | PubMed | Web of Science | Google Scholar
  • 6. Lee YQ, Collins CE, Gordon A, Rae KM, Pringle KG. The relationship between maternal nutrition during pregnancy and offspring kidney structure and function in humans: a systematic review. Nutrients 10: 241, 2018. doi:10.3390/nu10020241.
    Crossref | PubMed | Google Scholar
  • 7. Makayes Y, Resnick E, Hinden L, Aizenshtein E, Shlomi T, Kopan R, Nechama M, Volovelsky O. Increasing mTORC1 pathway activity or methionine supplementation during pregnancy reverses the negative effect of maternal malnutrition on the developing kidney. J Am Soc Nephrol 32: 1898–1912, 2021. doi:10.1681/ASN.2020091321.
    Crossref | PubMed | Web of Science | Google Scholar
  • 8. Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci 1363: 91–98, 2016. doi:10.1111/nyas.12956.
    Crossref | PubMed | Web of Science | Google Scholar
  • 9. Wanner N, Vornweg J, Combes A, Wilson S, Plappert J, Rafflenbeul G, Puelles VG, Rahman R-U, Liwinski T, Lindner S, Grahammer F, Kretz O, Wlodek ME, Romano T, Moritz KM, Boerries M, Busch H, Bonn S, Little MH, Bechtel-Walz W, Huber TB. DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation. J Am Soc Nephrol 30: 63–78, 2019. doi:10.1681/ASN.2018070736.
    Crossref | PubMed | Web of Science | Google Scholar
  • 10. Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20: 274–281, 2013. doi:10.1038/nsmb.2518.
    Crossref | PubMed | Web of Science | Google Scholar
  • 11. Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet 392: 777–786, 2018. doi:10.1016/S0140-6736(18)31268-6.
    Crossref | PubMed | Web of Science | Google Scholar
  • 12. Volovelsky O, Nguyen T, Jarmas AE, Combes AN, Wilson SB, Little MH, Witte DP, Brunskill EW, Kopan R. Hamartin regulates cessation of mouse nephrogenesis independently of Mtor. Proc Natl Acad Sci U S A 115: 5998–6003, 2018. doi:10.1073/pnas.1712955115.
    Crossref | PubMed | Web of Science | Google Scholar
  • 13. Boyle P, Clement K, Gu H, Smith ZD, Ziller M, Fostel JL, Holmes L, Meldrim J, Kelley F, Gnirke A, Meissner A. Gel-free multiplexed reduced representation bisulfite sequencing for large-scale DNA methylation profiling. Genome Biol 13: R92, 2012. doi:10.1186/gb-2012-13-10-r92.
    Crossref | PubMed | Web of Science | Google Scholar
  • 14. Andrews S. FastQC: a Quality Control Tool for High Throughput Sequence Data. Cambridge, UK: Babraham Bioinformatics, Babraham Institute, 2010.
    Google Scholar
  • 15. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17: 10–12, 2011.
    Crossref | Google Scholar
  • 16. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27: 1571–1572, 2011. doi:10.1093/bioinformatics/btr167.
    Crossref | PubMed | Web of Science | Google Scholar
  • 17. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, Mason C. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles Genome Biol 13: R87, 2012. doi:10.1186/gb-2012-13-10-r87.
    Crossref | PubMed | Web of Science | Google Scholar
  • 18. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359, 2012. doi:10.1038/nmeth.1923.
    Crossref | PubMed | Web of Science | Google Scholar
  • 19. Broad Institute. Picard Toolkit (Online). https://broadinstitute.github.io/picard/. [2019].
    Google Scholar
  • 20. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38: 576–589, 2010. doi:10.1016/j.molcel.2010.05.004.
    Crossref | PubMed | Web of Science | Google Scholar
  • 21. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28: 495–501, 2010. doi:10.1038/nbt.1630.
    Crossref | PubMed | Web of Science | Google Scholar
  • 22. Tanigawa Y, Dyer ES, Bejerano G. Which TF is functionally important in your open chromatin data? PLoS Comput Biol 18: e1010378, 2022. doi:10.1371/journal.pcbi.1010378.
    Crossref | PubMed | Web of Science | Google Scholar
  • 23. Navarro Gonzalez J, Zweig AS, Speir ML, Schmelter D, Rosenbloom KR, Raney BJ, Powell CC, Nassar LR, Maulding ND, Lee CM, Lee BT, Hinrichs AS, Fyfe AC, Fernandes JD, Diekhans M, Clawson H, Casper J, Benet-Pagès A, Barber GP, Haussler D, Kuhn RM, Haeussler M, Kent WJ. The UCSC Genome Browser database: 2021 update. Nucleic Acids Res 49: D1046–D1057, 2021. doi:10.1093/nar/gkaa1070.
    Crossref | PubMed | Web of Science | Google Scholar
  • 24. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM Wong MC, Maddren M, Fang R, Heitner SG, Lee BT, Barber GP, Harte RA, Diekhans M, Long JC, Wilder SP, Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 41: D56–D63, 2013. doi:10.1093/nar/gks1172.
    Crossref | PubMed | Web of Science | Google Scholar
  • 25. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 9: 215–216, 2012. doi:10.1038/nmeth.1906.
    Crossref | PubMed | Web of Science | Google Scholar
  • 26. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842, 2010. doi:10.1093/bioinformatics/btq033.
    Crossref | PubMed | Web of Science | Google Scholar
  • 27. Hilliard S, Song R, Liu H, Chen CH, Li Y, Baddoo M, Flemington E, Wanek A, Kolls J, Saifudeen Z, El-Dahr SS. Defining the dynamic chromatin landscape of mouse nephron progenitors. Biol Open 8: bio042754, 2019. doi:10.1242/bio.042754.
    Crossref | PubMed | Web of Science | Google Scholar
  • 28. Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D’Agati V, Costantini F. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41: 1295–302, 2009. doi:10.1038/ng.476.
    Crossref | PubMed | Web of Science | Google Scholar
  • 29. Dyson JJ, Abbasi F, Varadkar P, McCright B. Growth arrest of PPP2R5C and PPP2R5D double knockout mice indicates a genetic interaction and conserved function for these PP2A B subunits. FASEB Bioadv 4: 273–282, 2022. doi:10.1096/fba.2021-00130.
    Crossref | PubMed | Web of Science | Google Scholar
  • 30. Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 17: 337–351, 2017. doi:10.1038/nrc.2017.20.
    Crossref | PubMed | Web of Science | Google Scholar
  • 31. Kim JG, Shin HC, Seo T, Nawale L, Han G, Kim BY, Kim SJ, Cha-Molstad H. Signaling pathways regulated by UBR box-containing E3 ligases. Int J Mol Sci 22: 8323, 2021. doi:10.3390/ijms22158323.
    Crossref | PubMed | Web of Science | Google Scholar
  • 32. Liu HJ, Ooms LM, Srijakotre N, Man J, Vieusseux J, Waters JE, Feng Y, Bailey CG, Rasko JE, Price JT, Mitchell CA. PtdIns(3,4,5)P3-dependent Rac exchanger 1 (PREX1) Rac-guanine nucleotide exchange factor (GEF) activity promotes breast cancer cell proliferation and tumor growth via activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. J Biol Chem 291: 17258–17270, 2016. doi:10.1074/jbc.M116.743401.
    Crossref | PubMed | Web of Science | Google Scholar
  • 33. Greenberg MV, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20: 590–607, 2019. doi:10.1038/s41580-019-0159-6.
    Crossref | PubMed | Web of Science | Google Scholar
  • 34. Kar A, Gutierrez-Hartmann A. Molecular mechanisms of ETS transcription factor-mediated tumorigenesis. Crit Rev Biochem Mol Biol 48: 522–543, 2013. doi:10.3109/10409238.2013.838202.
    Crossref | PubMed | Web of Science | Google Scholar
  • 35. Stephens DC, Poon GM. Differential sensitivity to methylated DNA by ETS-family transcription factors is intrinsically encoded in their DNA-binding domains. Nucleic Acids Res 44: 8671–8681, 2016. doi:10.1093/nar/gkw528.
    Crossref | PubMed | Web of Science | Google Scholar
  • 36. Mañalich R, Reyes L, Herrera M, Melendi C, Fundora I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 58: 770–773, 2000. doi:10.1046/j.1523-1755.2000.00225.x.
    Crossref | PubMed | Web of Science | Google Scholar
  • 37. Jackson CM, Alexander BT, Roach L, Haggerty D, Marbury DC, Hutchens ZM, Flynn ER, Maric-Bilkan C. Exposure to maternal overnutrition and a high-fat diet during early postnatal development increases susceptibility to renal and metabolic injury later in life. Am J Physiol Renal Physiol 302: F774–F783, 2012. doi:10.1152/ajprenal.00491.2011.
    Link | Web of Science | Google Scholar
  • 38. Flynn ER, Alexander BT, Lee J, Hutchens ZM, Maric-Bilkan C. High-fat/fructose feeding during prenatal and postnatal development in female rats increases susceptibility to renal and metabolic injury later in life. Am J Physiol Regul Integr Comp Physiol 304: R278–R285, 2013. doi:10.1152/ajpregu.00433.2012.
    Link | Web of Science | Google Scholar