Research Article

The cardioprotective role of sirtuins is mediated in part by regulating KATP channel surface expression

Published Online:https://doi.org/10.1152/ajpcell.00459.2022

Sirtuins are NAD+-dependent deacetylases with beneficial roles in conditions relevant to human health, including metabolic disease, type II diabetes, obesity, cancer, aging, neurodegenerative diseases, and cardiac ischemia. Since ATP-sensitive K+ (KATP) channels have cardioprotective roles, we investigated whether they are regulated by sirtuins. Nicotinamide mononucleotide (NMN) was used to increase cytosolic NAD+ levels and to activate sirtuins in cell lines, isolated rat and mouse cardiomyocytes or insulin-secreting INS-1 cells. KATP channels were studied with patch clamping, biochemistry techniques, and antibody uptake experiments. NMN led to an increase in intracellular NAD+ levels and an increase in the KATP channel current, without significant changes in the unitary current amplitude or open probability. An increased surface expression was confirmed using surface biotinylation approaches. The rate of KATP channel internalization was diminished by NMN, which may be a partial explanation for the increased surface expression. We show that NMN acts via sirtuins since the increased KATP channel surface expression was prevented by blockers of SIRT1 and SIRT2 (Ex527 and AGK2) and mimicked by SIRT1 activation (SRT1720). The pathophysiological relevance of this finding was studied using a cardioprotection assay with isolated ventricular myocytes, in which NMN protected against simulated ischemia or hypoxia in a KATP channel-dependent manner. Overall, our data draw a link between intracellular NAD+, sirtuin activation, KATP channel surface expression, and cardiac protection against ischemic damage.

REFERENCES

  • 1. Han KK, Martinage A. Post-translational chemical modification(s) of proteins. Int J Biochem 24: 19–28, 1992. doi:10.1016/0020-711x(92)90225-p.
    Crossref | PubMed | Google Scholar
  • 2. Polevoda B, Sherman F. The diversity of acetylated proteins. Genome Biol 3: reviews0006, 2002. doi:10.1186/gb-2002-3-5-reviews0006.
    Crossref | PubMed | ISI | Google Scholar
  • 3. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23: 607–618, 2006. doi:10.1016/j.molcel.2006.06.026.
    Crossref | PubMed | ISI | Google Scholar
  • 4. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325: 834–840, 2009. doi:10.1126/science.1175371.
    Crossref | PubMed | ISI | Google Scholar
  • 5. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T, Kelstrup CD, Dmytriyev A, Choudhary C, Lundby C, Olsen JV. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2: 419–431, 2012. doi:10.1016/j.celrep.2012.07.006.
    Crossref | PubMed | ISI | Google Scholar
  • 6. Davidson MT, Grimsrud PA, Lai L, Draper JA, Fisher-Wellman KH, Narowski TM, Abraham DM, Koves TR, Kelly DP, Muoio DM. Extreme acetylation of the cardiac mitochondrial proteome does not promote heart failure. Circ Res 127: 1094–1108, 2020. doi:10.1161/CIRCRESAHA.120.317293.
    Crossref | PubMed | ISI | Google Scholar
  • 7. Teixeira CSS, Cerqueira N, Gomes P, Sousa SF. A molecular perspective on Sirtuin activity. Int J Mol Sci 21: 8609, 2020. doi:10.3390/ijms21228609.
    Crossref | PubMed | ISI | Google Scholar
  • 8. Hisahara S, Chiba S, Matsumoto H, Tanno M, Yagi H, Shimohama S, Sato M, Horio Y. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc Natl Acad Sci USA 105: 15599–15604, 2008. doi:10.1073/pnas.0800612105.
    Crossref | PubMed | ISI | Google Scholar
  • 9. North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2: e784, 2007. doi:10.1371/journal.pone.0000784.
    Crossref | PubMed | ISI | Google Scholar
  • 10. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100: 1512–1521, 2007. doi:10.1161/01.RES.0000267723.65696.4a.
    Crossref | PubMed | ISI | Google Scholar
  • 11. Hsu CP, Odewale I, Alcendor RR, Sadoshima J. Sirt1 protects the heart from aging and stress. Biol Chem 389: 221–231, 2008. doi:10.1515/BC.2008.032.
    Crossref | PubMed | ISI | Google Scholar
  • 12. Hsu CP, Oka S, Shao D, Hariharan N, Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res 105: 481–491, 2009. doi:10.1161/CIRCRESAHA.109.203703.
    Crossref | PubMed | ISI | Google Scholar
  • 13. Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122: 2170–2182, 2010. doi:10.1161/CIRCULATIONAHA.110.958033.
    Crossref | PubMed | ISI | Google Scholar
  • 14. Yamamoto T, Sadoshima J. Protection of the heart against ischemia/reperfusion by silent information regulator 1. Trends Cardiovasc Med 21: 27–32, 2011. doi:10.1016/j.tcm.2012.01.005.
    Crossref | PubMed | ISI | Google Scholar
  • 15. Nadtochiy SM, Redman E, Rahman I, Brookes PS. Lysine deacetylation in ischaemic preconditioning: the role of SIRT1. Cardiovasc Res 89: 643–649, 2011. doi:10.1093/cvr/cvq287.
    Crossref | PubMed | ISI | Google Scholar
  • 16. Kao CL, Chen LK, Chang YL, Yung MC, Hsu CC, Chen YC, Lo WL, Chen SJ, Ku HH, Hwang SJ. Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb 17: 970–979, 2010. doi:10.5551/jat.4333.
    Crossref | PubMed | ISI | Google Scholar
  • 17. Zhang C, Feng Y, Qu S, Wei X, Zhu H, Luo Q, Liu M, Chen G, Xiao X. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res 90: 538–545, 2011. doi:10.1093/cvr/cvr022.
    Crossref | PubMed | ISI | Google Scholar
  • 18. Bagul PK, Deepthi N, Sultana R, Banerjee SK. Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J Nutr Biochem 26: 1298–1307, 2015. doi:10.1016/j.jnutbio.2015.06.006.
    Crossref | PubMed | ISI | Google Scholar
  • 19. Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 9: e98972, 2014. doi:10.1371/journal.pone.0098972.
    Crossref | PubMed | ISI | Google Scholar
  • 20. de Picciotto NE, Gano LB, Johnson LC, Martens CR, Sindler AL, Mills KF, Imai S, Seals DR. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15: 522–530, 2016. doi:10.1111/acel.12461.
    Crossref | PubMed | ISI | Google Scholar
  • 21. Ding M, Lei J, Han H, Li W, Qu Y, Fu E, Fu F, Wang X. SIRT1 protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats. Cardiovasc Diabetol 14: 143, 2015. doi:10.1186/s12933-015-0299-8.
    Crossref | PubMed | ISI | Google Scholar
  • 22. Vikram A, Lewarchik CM, Yoon JY, Naqvi A, Kumar S, Morgan GM, Jacobs JS, Li Q, Kim YR, Kassan M, Liu J, Gabani M, Kumar A, Mehdi H, Zhu X, Guan X, Kutschke W, Zhang X, Boudreau RL, Dai S, Matasic DS, Jung SB, Margulies KB, Kumar V, Bachschmid MM, London B, Irani K. Sirtuin 1 regulates cardiac electrical activity by deacetylating the cardiac sodium channel. Nat Med 23: 361–367, 2017. doi:10.1038/nm.4284.
    Crossref | PubMed | ISI | Google Scholar
  • 23. Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, Park Z-Y, Yoo YJ, Kim DH, Kook H, Sunagawa Y, Morimoto T, Hasegawa K, Sadoshima J, Vangheluwe P, Hajjar RJ, Park WJ, Kho C. Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca2+-ATPase in heart failure. Circ Res 124: e63–e80, 2019 [Erratum in Circ Res 124: e149, 2019]. doi:10.1161/CIRCRESAHA.118.313865.
    Crossref | PubMed | ISI | Google Scholar
  • 24. Foster MN, Coetzee WA. KATP channels in the cardiovascular system. Physiol Rev 96: 177–252, 2016. doi:10.1152/physrev.00003.2015.
    Link | ISI | Google Scholar
  • 25. Sierra A, Zhu Z, Sapay N, Sharotri V, Kline CF, Luczak ED, Subbotina E, Sivaprasadarao A, Snyder PM, Mohler PJ, Anderson ME, Vivaudou M, Zingman LV, Hodgson-Zingman DM. Regulation of cardiac ATP-sensitive potassium channel surface expression by calcium/calmodulin-dependent protein kinase II. J Biol Chem 288: 1568–1581, 2013. doi:10.1074/jbc.M112.429548.
    Crossref | PubMed | ISI | Google Scholar
  • 26. Yang HQ, Foster MN, Jana K, Ho J, Rindler MJ, Coetzee WA. Plasticity of sarcolemmal KATP channel surface expression: relevance during ischemia and ischemic preconditioning. Am J Physiol Heart Circ Physiol 310: H1558–H1566, 2016. doi:10.1152/ajpheart.00158.2016.
    Link | ISI | Google Scholar
  • 27. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 440: 470–476, 2006. doi:10.1038/nature04711.
    Crossref | PubMed | ISI | Google Scholar
  • 28. Yang HQ, Echeverry FA, ElSheikh A, Gando I, Anez Arredondo S, Samper N, Cardozo T, Delmar M, Shyng SL, Coetzee WA. Subcellular trafficking and endocytic recycling of K(ATP) channels. Am J Physiol Cell Physiol 322: C1230–C1247, 2022. doi:10.1152/ajpcell.00099.2022.
    Link | ISI | Google Scholar
  • 29. Li J, Marionneau C, Koval O, Zingman L, Mohler PJ, Nerbonne JM, Anderson ME. Calmodulin kinase II inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current. Channels (Austin) 1: 387–394, 2007. doi:10.4161/chan.5449.
    Crossref | PubMed | Google Scholar
  • 30. Yang HQ, Jana K, Rindler MJ, Coetzee WA. The trafficking protein, EHD2, positively regulates cardiac sarcolemmal KATP channel surface expression: role in cardioprotection. FASEB J 32: 1613–1625, 2018. doi:10.1096/fj.201700027R.
    Crossref | PubMed | ISI | Google Scholar
  • 31. Ackers-Johnson M, Li PY, Holmes AP, O'Brien SM, Pavlovic D, Foo RS. A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res 119: 909–920, 2016. doi:10.1161/CIRCRESAHA.116.309202.
    Crossref | PubMed | ISI | Google Scholar
  • 32. O'Shea KM, Ananthakrishnan R, Li Q, Quadri N, Thiagarajan D, Sreejit G, Wang L, Zirpoli H, Aranda JF, Alberts AS, Schmidt AM, Ramasamy R. The Formin, DIAPH1, is a key modulator of myocardial ischemia/reperfusion injury. EBioMedicine 26: 165–174, 2017. doi:10.1016/j.ebiom.2017.11.012.
    Crossref | PubMed | ISI | Google Scholar
  • 33. Guan Y, Wang SR, Huang XZ, Xie QH, Xu YY, Shang D, Hao CM. Nicotinamide mononucleotide, an NAD(+) precursor, rescues age-associated susceptibility to AKI in a Sirtuin 1-dependent manner. J Am Soc Nephrol 28: 2337–2352, 2017 [Erratum in J Am Soc Nephrol 28: 2553, 2017]. doi:10.1681/ASN.2016040385.
    Crossref | PubMed | ISI | Google Scholar
  • 34. Nadtochiy SM, Wang YT, Nehrke K, Munger J, Brookes PS. Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH. J Mol Cell Cardiol 121: 155–162, 2018. doi:10.1016/j.yjmcc.2018.06.007.
    Crossref | PubMed | ISI | Google Scholar
  • 35. Yang HQ, Pérez-Hernández M, Sanchez-Alonso J, Shevchuk A, Gorelik J, Rothenberg E, Delmar M, Coetzee WA. Ankyrin-G mediates targeting of both Na(+) and KATP channels to the rat cardiac intercalated disc. eLife 9: e52373, 2020. doi:10.7554/eLife.52373.
    Crossref | PubMed | ISI | Google Scholar
  • 36. Yang HQ, Martinez-Ortiz W, Hwang J, Fan X, Cardozo TJ, Coetzee WA. Palmitoylation of the KATP channel Kir6.2 subunit promotes channel opening by regulating PIP2 sensitivity. Proc Natl Acad Sci USA 117: 10593–10602, 2020. doi:10.1073/pnas.1918088117.
    Crossref | PubMed | ISI | Google Scholar
  • 37. Garg V, Jiao J, Hu K. Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes. Cardiovasc Res 82: 51–58, 2009. doi:10.1093/cvr/cvp039.
    Crossref | PubMed | ISI | Google Scholar
  • 38. Storey NM, Stratton RC, Rainbow RD, Standen NB, Lodwick D. Kir6.2 limits Ca(2+) overload and mitochondrial oscillations of ventricular myocytes in response to metabolic stress. Am J Physiol Heart Circ Physiol 305: H1508–H1518, 2013. doi:10.1152/ajpheart.00540.2013.
    Link | ISI | Google Scholar
  • 39. Dunne MJ, Findlay I, Petersen OH. Effects of pyridine nucleotides on the gating of ATP-sensitive potassium channels in insulin-secreting cells. J Membr Biol 102: 205–216, 1988. doi:10.1007/BF01925714.
    Crossref | PubMed | ISI | Google Scholar
  • 40. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23, 2005. doi:10.1016/j.gene.2005.09.010.
    Crossref | PubMed | ISI | Google Scholar
  • 41. Aka JA, Kim GW, Yang XJ. K-acetylation and its enzymes: overview and new developments. Handb Exp Pharmacol 206: 1–12, 2011. doi:10.1007/978-3-642-21631-2_1.
    Crossref | PubMed | Google Scholar
  • 42. Foster DB, Liu T, Rucker J, O'Meally RN, Devine LR, Cole RN, O'Rourke B. The cardiac acetyl-lysine proteome. PLoS One 8: e67513, 2013. doi:10.1371/journal.pone.0067513.
    Crossref | PubMed | ISI | Google Scholar
  • 43. Hallows WC, Yu W, Denu JM. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J Biol Chem 287: 3850–3858, 2012. doi:10.1074/jbc.M111.317404.
    Crossref | PubMed | ISI | Google Scholar
  • 44. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xiong Y, Guan KL, Lei QY. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42: 719–730, 2011. doi:10.1016/j.molcel.2011.04.025.
    Crossref | PubMed | ISI | Google Scholar
  • 45. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015, 2004. doi:10.1126/science.1094637.
    Crossref | PubMed | ISI | Google Scholar
  • 46. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551–563, 2004. doi:10.1016/s0092-8674(04)00126-6.
    Crossref | PubMed | ISI | Google Scholar
  • 47. Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 281: 39915–39924, 2006. doi:10.1074/jbc.M607215200.
    Crossref | PubMed | ISI | Google Scholar
  • 48. Thakur BK, Lippka Y, Dittrich T, Chandra P, Skokowa J, Welte K. NAMPT pathway is involved in the FOXO3a-mediated regulation of GADD45A expression. Biochem Biophys Res Commun 420: 714–720, 2012. doi:10.1016/j.bbrc.2012.03.017.
    Crossref | PubMed | ISI | Google Scholar
  • 49. Pillai VB, Sundaresan NR, Samant SA, Wolfgeher D, Trivedi CM, Gupta MP. Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes. Mol Cell Biol 31: 2349–2363, 2011. doi:10.1128/MCB.01205-10.
    Crossref | PubMed | ISI | Google Scholar
  • 50. Ozden O, Park SH, Kim HS, Jiang H, Coleman MC, Spitz DR, Gius D. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY) 3: 102–107, 2011. doi:10.18632/aging.100291.
    Crossref | PubMed | Google Scholar
  • 51. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, Olivier AK, Spitz DR, Gius D. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40: 893–904, 2010. doi:10.1016/j.molcel.2010.12.013.
    Crossref | PubMed | ISI | Google Scholar
  • 52. Xu Q, Patel D, Zhang X, Veenstra RD. Changes in cardiac Nav1.5 expression, function, and acetylation by pan-histone deacetylase inhibitors. Am J Physiol Heart Circ Physiol 311: H1139–H1149, 2016. doi:10.1152/ajpheart.00156.2016.
    Link | ISI | Google Scholar
  • 53. Yoon JY, Vikram A, London B, Irani K. Reversible lysine acetylation: Another layer of post-translational regulation of the cardiac sodium channel. Channels (Austin) 11: 360–361, 2017. doi:10.1080/19336950.2017.1340015.
    Crossref | PubMed | Google Scholar
  • 54. Hyndman KA, Yang CR, Jung HJ, Umejiego EN, Chou CL, Knepper MA. Proteomic determination of the lysine acetylome and phosphoproteome in the rat native inner medullary collecting duct. Physiol Genomics 50: 669–679, 2018. doi:10.1152/physiolgenomics.00029.2018.
    Link | ISI | Google Scholar
  • 55. Wang W, Li X, Xu Y, Guo W, Yu H, Zhang L, Wang Y, Chen X. Acetylation-stabilized chloride intracellular channel 1 exerts a tumor-promoting effect on cervical cancer cells by activating NF-κB. Cell Oncol (Dordr) 44: 557–568, 2021. doi:10.1007/s13402-020-00582-w.
    Crossref | PubMed | Google Scholar
  • 56. Alaei SR, Abrams CK, Bulinski JC, Hertzberg EL, Freidin MM. Acetylation of C-terminal lysines modulates protein turnover and stability of Connexin-32. BMC Cell Biol 19: 22, 2018. doi:10.1186/s12860-018-0173-0.
    Crossref | PubMed | Google Scholar
  • 57. Butler PL, Staruschenko A, Snyder PM. Acetylation stimulates the epithelial sodium channel by reducing its ubiquitination and degradation. J Biol Chem 290: 12497–12503, 2015. doi:10.1074/jbc.M114.635540.
    Crossref | PubMed | ISI | Google Scholar
  • 58. Cho HM, Lee DY, Kim HY, Lee HA, Seok YM, Kim IK. Upregulation of the Na(+)-K(+)-2Cl(-) cotransporter 1 via histone modification in the aortas of angiotensin II-induced hypertensive rats. Hypertens Res 35: 819–824, 2012. doi:10.1038/hr.2012.37.
    Crossref | PubMed | ISI | Google Scholar
  • 59. Wang G, Li S, Gilbert J, Gritton HJ, Wang Z, Li Z, Han X, Selkoe DJ, Man HY. Crucial roles for SIRT2 and AMPA receptor acetylation in synaptic plasticity and memory. Cell Rep 20: 1335–1347, 2017. doi:10.1016/j.celrep.2017.07.030.
    Crossref | PubMed | ISI | Google Scholar
  • 60. Kim SJ, Ao Z, Warnock G, McIntosh CH. Incretin-stimulated interaction between β-cell Kv1.5 and Kvβ2 channel proteins involves acetylation/deacetylation by CBP/SirT1. Biochem J 451: 227–234, 2013. doi:10.1042/BJ20121669.
    Crossref | PubMed | ISI | Google Scholar
  • 61. Li P, Kurata Y, Endang M, Ninomiya H, Higaki K, Taufiq F, Morikawa K, Shirayoshi Y, Horie M, Hisatome I. Restoration of mutant hERG stability by inhibition of HDAC6. J Mol Cell Cardiol 115: 158–169, 2018. doi:10.1016/j.yjmcc.2018.01.009.
    Crossref | PubMed | ISI | Google Scholar
  • 62. Sadoul K, Wang J, Diagouraga B, Khochbin S. The tale of protein lysine acetylation in the cytoplasm. J Biomed Biotechnol 2011: 970382, 2011. doi:10.1155/2011/970382.
    Crossref | PubMed | Google Scholar
  • 63. Zencheck WD, Xiao H, Weiss LM. Lysine post-translational modifications and the cytoskeleton. Essays Biochem 52: 135–145, 2012. doi:10.1042/bse0520135.
    Crossref | PubMed | ISI | Google Scholar
  • 64. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16: 2166–2172, 2006. doi:10.1016/j.cub.2006.09.014.
    Crossref | PubMed | ISI | Google Scholar
  • 65. Zheng Y, Shi B, Ma M, Wu X, Lin X. The novel relationship between Sirt3 and autophagy in myocardial ischemia-reperfusion. J Cell Physiol 234: 5488–5495, 2019. doi:10.1002/jcp.27329.
    Crossref | PubMed | ISI | Google Scholar
  • 66. Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, Yu L, Liu Z, Yu B, Ren K, Gao E, Yang Y, Liang H, Jin Z, Yu S. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res 63: e12419, 2017. doi:10.1111/jpi.12419.
    Crossref | PubMed | ISI | Google Scholar
  • 67. Akhmedov A, Montecucco F, Costantino S, Vdovenko D, Schaub Clerigué A, Gaul DS, Burger F, Roth A, Carbone F, Liberale L, Amrollahi-Sharifabadi M, Vellone VG, Eriksson U, Matter CM, Crowe LA, Vallée JP, Paneni F, Vanhoutte PM, Camici GG, Mach F, Lüscher TF. Cardiomyocyte-specific JunD overexpression increases infarct size following ischemia/reperfusion cardiac injury by downregulating Sirt3. Thromb Haemost 120: 168–180, 2020. doi:10.1055/s-0039-3400299.
    Crossref | PubMed | ISI | Google Scholar